
1
An Introduction to
Knowledge Engineering

Introduction

This chapter introduces some of the key concepts in knowledge engineering. Al-
most all of the topics are covered in summary form, and they will be explained in
more detail in subsequent chapters.

The chapter consists of three sections:

1. Data, information and knowledge
2. Skills of a knowledge engineer
3. An introduction to knowledge-based systems (KBSs).

Objectives

By the end of this chapter, you will be able to:

� define knowledge and explain its relationship to data and information
� distinguish between knowledge management and knowledge engineering
� explain the skills required of a knowledge engineer
� comment on the professionalism, methods and standards required of a knowledge

engineer
� explain the difference between knowledge engineering and artificial intelligence
� define KBSs
� explain what a KBS can do
� explain the differences between human and computer processing
� state a brief definition of expert systems, neural networks, case-based reasoning,

genetic algorithms, intelligent agents and data mining.
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SECTION 1: DATA, INFORMATION
AND KNOWLEDGE

Introduction

This section defines knowledge and explains its relationship to data and informa-
tion.

Objectives

By the end of this section you will be able to:

� develop a working definition of knowledge and describe its relationship to data
and information.

What Is Knowledge Engineering?

‘Knowledge engineering is the process of developing knowledge based systems in
any field, whether it be in the public or private sector, in commerce or in industry’
(Debenham, 1988).

But what, precisely, is knowledge?

What Is Knowledge?

Knowledge is ‘The explicit functional associations between items of information
and/or data’ (Debenham, 1988).

Data, Information and Knowledge

What is data? Is it the same as information? Before we can attempt to understand
what knowledge is, we should at least attempt to come closer to establishing exactly
what data and information are.
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Activity 1
The following activity introduces you to the concepts of data and information:
1. Read the following descriptions and definitions of ‘data’ drawn from a

variety of sources:

Data (the plural of datum) are just raw facts (Long and Long, 1998).
Data . . . are streams of raw facts representing events . . . before they have

been arranged into a form that people can understand and use (Laudon
and Laudon, 1998).

Data is comprised of facts (Hayes, 1992).
Recorded symbols (McNurlin and Sprague, 1998).

2. Make a note of any factors common to two or more of the descriptions.

Feedback 1
You will have noticed that data is often spoken of as the same as ‘facts’—often
‘raw’ and, in the first quotation, considered to move in a ‘stream’. The final quo-
tation from Hayes appears to look deeper in defining data more fundamentally
as recorded symbols.

Hayes actually goes on to insist that data are not facts and that treating them as such
can produce ‘innumerable perversions’ for example, in the form of propaganda or
lies—which are still ‘data’.

You do not need to accept or reject any of the definitions you encounter—simply
be aware that there are no universally accepted definitions of data.

Similarly, in connection to the meaning of the term ‘information’, we find that
there are many attempts at definitions in the textbooks on information systems
and information technology. In many ways the meanings of the words ‘data’ and
‘information’ only become clearer when we approach the differences between
them. The following activity will help you to appreciate this.

Activity 2
This activity introduces you to some definitions of information and its relation-
ship to data.
1. Read the following definitions and descriptions of information. As in the

last activity look for common denominators.

That property of data which represents and measures effects of processing
them (Hayes, 1992).

By information we mean data that have been shaped into a form that is
meaningful and useful to human beings (Laudon and Laudon, 1998).
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Information is data that have been collected and processed into a meaningful
form. Simply, information is the meaning we give to accumulated facts
(data) (Long and Long, 1998).

Information is the emergent property which comes from processing data so
that it is transformed into a structured whole (Harry, 1994).

Information is data presented in a form that is meaningful to the recipient
(Senn, 1990).

Information is data in context (McNurlin and Sprague, 1998).
Information is data endowed with relevance and purpose (Drucker, 1988).

2. Make a note of any similarities between the different descriptions.

Feedback 2
You should have noted that information is commonly thought to be data, pro-
cessed or transformed into a form or structure suitable for use by human beings.
Such words as ‘meaning’, ‘meaningful’, ‘useful’ and ‘purpose’ are in evidence
here.

You may also have noted that information is considered a property of data. This
implies that the former cannot exist without the latter.

In the definitions of information you will have seen how the meaning of the
word becomes clearer when the differences between it and data are considered.
For example, whereas the ‘rawness’ of data was emphasised earlier, informa-
tion is considered to be some refinement of data for the purposes of human
use.

In addition, the words ‘knowledge’ and ‘communication’ have emerged as having
a relationship to data and information. What is also worth emphasising at this point
is that the interface between data and a human being’s interpretation of it is where
information—determined by ‘meaning’—really emerges.

The two terms are still often used interchangeably and no definition of either will
apply in all the situations you might encounter.

Knowledge

In common language, the word knowledge is obviously related to information, but
it is clear that they are not the same thing. So, how can we define knowledge in the
same flexible way in which we have arrived at working definitions of information
and data?
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Activity 3
This activity extends your understanding of data and information.

Look at the seven topics described briefly below. Which of them would you
consider yourself as ‘knowing’, and which would you consider yourself as
having information about?
(a) A second language in which you are fluent.
(b) The content of a television news programme.
(c) A close friend.
(d) A company’s annual report.
(e) Your close friend’s partner whom you have yet to meet.
(f) The weather on the other side of the world.
(g) The weather where you are now.

Feedback 3
It is probable—but by no means certain—that you will have been inclined to
consider items (a), (c) and (g) as things you can know about and the others
as things for which you may have information. Note that the items that you
would not describe yourself as possessing knowledge of could actually become
known if circumstances were different, e.g. you might come to know your close
friend’s partner.

It is also worth noting that all of this depends on individual perceptions rather
than measurable facts. You may only think you know your close friend. Simi-
larly, your fluency in the second language will always be relatively poorer than
that of a native speaker.

Activity 4
This activity brings you closer to a definition by helping you highlight the
differences between having information and possessing knowledge.

What would you suggest is the primary characteristic that distinguishes the
‘having information’ situations from the ‘knowing’ situations you categorised
in the previous activity? You will need to make sure that your description does
not simply describe information or data, but must particularly take account of
the former.
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Feedback 4
You should have been able to identify specific characteristics of knowledge that
distinguish it from information similar to those highlighted in the following
quotations. According to experts in the field, knowledge is:

the result of the understanding of information (Hayes, 1992)
the result of internalising information (Hayes, 1992)
collected information about an area of concern (Senn, 1990)
information with direction or intent—it facilitates a decision or an action

(Zachman, 1987).

Here it has become clear that knowledge is what someone has after understanding
information. Often this understanding follows the development of a detailed or
long-term relationship with the known person or thing. Such a process can often
be accelerated when the need to use the information for a critical decision arises.
This application of information to a decision or area of concern is particularly
relevant in an organisational situation.

However, it should be clear that data, information and knowledge are not static
things in themselves but stages in the process of using data and transforming it
into knowledge. On this basis they can be considered points along a continuum,
moving from less to more usefulness to a human being, in much the same way
as we all move along a continuum from young to old, but at no point can we be
defined as either.

Activity 5
Temperature and humidity readings are taken from various locations around
one city. These readings are taken four times each day, and the results collated
in a central location.

The city is 12 miles in diameter. Readings taken on the periphery of the city
can show, over time, how rain or adverse weather conditions start at one side
of the city and move across to the other side.

Details of adverse weather can be used to warn weather-sensitive activities such
as cricket or tennis matches when to expect a break in play.

Explain how a series of temperature and humidity readings can be transformed
from data into knowledge.
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Feedback 5
Data. Individual temperature and humidity readings, by themselves, are simply
numbers, and therefore represent data.

Information. Information on where the readings have been taken (e.g. at which
point in the city) and at what time provides a trend to show how the temperature
is currently changing. This information can be used by someone to make a
decision.

Knowledge. Knowing how the temperature and humidity are changing AND,
knowing about how the weather can affect people living or working in the
city will allow decisions to be made concerning the use of umbrellas, warm
clothing, running a cricket or tennis match, etc. In this situation, two or more
sets of information are related and can be processed to reach a decision.

The movement from data to knowledge implies a shift from facts and figures
to more abstract concepts, as shown in Figure 1.1.

Value

Concepts 

Data

Information

Knowledge

Facts and  
figures

The temperature 
outside is 5oC

It is cold – put 
on a warm coat. 

Example

It is cold 
outside.

FIGURE 1.1. Data, information and knowledge.

In other words:

It is 5◦C—data.
It is cold—information.
It is cold outside AND if it is cold you should wear a warm coat—knowledge.

From a knowledge engineering perspective, it is useful to consider knowledge as
something that can be expressed as a rule or useful to assist a decision, i.e.,

IF it is cold outside THEN wear a warm coat.

The perceived value of data increases as it is transferred into knowledge, because
the latter enables useful decisions to be made.
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Activity 6
Knowledge engineering normally involves five distinct steps (listed below) in
transferring human knowledge into some form of knowledge based system
(KBS).

Explain what you think should be involved in each of these activities.
1. Knowledge acquisition
2. Knowledge validation
3. Knowledge representation
4. Inferencing
5. Explanation and justification.

Feedback 6
Knowledge acquisition involves obtaining knowledge from various sources
including human experts, books, videos and existing computer sources of data
such as databases and the Internet.

In knowledge validation, knowledge is checked using test cases for adequate
quality.

Knowledge representation involves producing a map of the knowledge and then
encoding this knowledge into the knowledge base.

Inferencing means forming links (or inferences) in the knowledge in the com-
puter software so that the KBS can make a decision or provide advice to the
user.

Explanation and justification involves additional computer program design,
primarily to help the computer answer questions posed by the user and also to
show how a conclusion was reached using knowledge in the knowledge base.

Knowledge Engineering and Knowledge Management

The terms ‘knowledge management’ and ‘knowledge engineering’ seem to be
used as interchangeably as the terms data and information used to be. The term
‘manage’ relates to exercising executive, administrative and supervisory direction,
whereas, to engineer is to lay out, construct or contrive or plan out, usually with
more or less subtle skill and craft.

The main difference seems to be that the (knowledge) manager establishes the
direction the process should take, where as the (knowledge) engineer develops the
means to accomplish that direction.

We should therefore find knowledge managers concerned with the knowledge
needs of the enterprise, e.g. discovering what knowledge is needed to make
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decisions and enable actions. They should be taking a key role in the design of
the enterprise and from the needs of the enterprise they should be establishing the
enterprise level knowledge management policies.

On the other hand, if we were to look in on the knowledge engineers we should find
them concerned with data and information representation and encoding method-
ologies, data repositories, etc. The knowledge engineers would be interested in
what technologies are needed to meet the enterprise’s knowledge management
needs.

The knowledge engineer is most likely a computer scientist specialising the devel-
opment of knowledge bases but a knowledge manager may be the chief information
officer or the person in charge of the information resource management.

Summary

This section has introduced the concept of knowledge engineering and the rela-
tionship between data, information and knowledge.

Self-Assessment Question

Try and think of other systems within your immediate environment that result in
data being transferred into information and then knowledge.

Answer to Self-Assessment Question

You might have thought of the following example:
50 litres (Data)—e.g. the amount of petrol your car can hold.
Having filled the tank, this can implicitly indicate that you can now travel 320

miles. (Information)
With the information above, a map and the addresses of several friends, you can

now decide who you can visit within a 160 mile radius (assuming that the next
refuelling will take place back at home). (Knowledge)
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SECTION 2: SKILLS OF A KNOWLEDGE ENGINEER

Introduction

This section introduces one of the most important people in knowledge engineer-
ing; namely the knowledge engineer. The knowledge engineer is responsible for
obtaining knowledge from human experts and then entering this knowledge into
some form of KBS. To undertake these activities, specific skills are required.

Objectives

By the end of this section you will be able to:

� explain the skills and knowledge required of a knowledge engineer
� comment on the professionalism, methods and standards required of a knowledge

engineer.

Knowledge Required of a Knowledge Engineer

To begin with, a knowledge engineer must extract knowledge from people (human
experts) that can be placed into knowledge based systems (KBSs).

This knowledge must then be represented in some format that is understandable
both to the knowledge engineer, the human expert and the programmer of the KBS.

A computer program, which processes that knowledge or makes inferences, must
be developed, and the software system that is being produced must be validated.
The knowledge engineer may be involved in the development of the program, or
this may be delegated to another person.

In developing these systems the knowledge engineer must apply methods, use
tools, apply quality control and standards.

To undertake these activities, the knowledge engineer must plan and manage
projects, and take into account human, financial and environmental constraints.

Overview of Knowledge Engineers Work

To summarise the above points, knowledge engineering includes the process of
knowledge acquisition, knowledge representation, software design and implemen-
tation.
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To meet the objective of designing a KBS, the knowledge engineer will have to:

� acquire the knowledge from the expert to be used in the system
� use an appropriate method for representing knowledge in a symbolic, processable

form.

This means that to deserve the title of knowledge engineer we must really
apply professional and rigorous approaches to the development of a product.
The engineer will also use various techniques to ensure quality and work to
standards.

Knowledge engineering is a multi-stage process, and traditionally a business being
tackled by a range of professionals. These include psychologists, computer scien-
tists, software engineers, project managers, systems analysts, domain (or subject)
experts and knowledge specialists.

Types of Knowledge

The knowledge engineer will normally be dealing with three types of knowledge:

� Declarative knowledge tells us facts about things. For example, the statement ‘A
light bulb requires electricity to shine’ is factually correct.

� Procedural knowledge provides alternative actions based on the use of facts to
obtain knowledge. For example, an individual will normally check the amount
of water in a kettle before turning it on; if there is insufficient water in the kettle,
then more will be added.

� Meta-knowledge is knowledge about knowledge. It helps us understand how
experts use knowledge to make decisions. For example, knowledge about planes
and trains might be useful when planning a long journey and knowledge about
footpaths and bicycles might be useful when planning a short journey.

A knowledge engineer must be able to distinguish between these three types of
knowledge and understand how to codify different knowledge types into some
form of KBS.

Activity 7
A knowledge engineer will be involved in the following tasks:
� Advising the expert on the knowledge required for a system
� Acquiring knowledge from the expert
� Encoding the knowledge in some form ready for inclusion in the knowledge

base
� Entering the knowledge into a knowledge base on a computer system
� Validating the knowledge in that knowledge base to ensure that it is accurate
� Training users to access and use the knowledge in the knowledge base.
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Knowledge engineers are trained in techniques to extract knowledge from ex-
perts, in the same way that systems analysts and other specialists are trained to
obtain user requirements.

Think of a situation where you have either had to provide knowledge to someone
or even had to obtain knowledge from a third party—this will help you answer
the following question:

What tools or techniques are available to assist the knowledge engineer in
carrying out these activities?

Feedback 7
Advising and obtaining knowledge from the expert can be supporting by some
formal elicitation techniques, or use of interviews, questionnaires and similar
fact-finding methods.

In addition to standard techniques, software including text editors and specialised
knowledge representation languages such as KARL (Fensel, 1996) can assist in
the encoding of knowledge for inclusion in a knowledge base.

Specialised programs such as TEIRESIAS (Davis, 1993), help to validate knowl-
edge and check for errors within a knowledge base.

Professionalism, Methods and Standards

Apart from the skills required to place knowledge into a KBS, a knowledge engineer
will also normally be expected to:

� be bound by a professional code of conduct
� update their knowledge and skills on a regular basis
� adhere to appropriate rules, regulations and legal requirements.

The following managerial and interpersonal skills are also expected from knowl-
edge engineers. The most important skills are identified at the top of the
list.

� Knowledge representation
� Fact finding
� Human skills
� Visualisation skills
� Analysis
� Creativity
� Managerial.
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The Project Champion

There are many people involved in the actual building of a KBS. Some of those
people, such as the knowledge engineer and the human expert, have been discussed
earlier in this chapter.

However, one of the most important people involved in a KBS project from the
users perspective is the Project Champion. This is a person who works with the
project team, most likely as a user representative. Such a person must:

� be able to convince users that the KBS is needed
� have an appropriate level of authority
� ‘get on’ with both management and users
� have a personal investment in the project
� believe in the need for the KBS
� be capable of presenting the business benefits to management
� be highly motivated towards the success of the project.

Convincing Management

One of the key activities that takes place at the beginning of a KBS project is con-
vincing management of the need for the system. Obtaining management approval
is essential because without appropriate ‘buy-in’ there will not be the necessary
management support, nor the funding required to build and maintain the KBS.

A presentation of the aims of the KBS early in the project will:

� provide an opportunity for management to be made aware of the reality of the
project

� allow the knowledge engineer to gauge the real level of support from manage-
ment.

The aim of the presentation is therefore to obtain management buy-in and the
funding for the project. The overall level of support from management will be
determined partly by enthusiasm in the meeting and partly by the level of funding
obtained.

Example of a KBS Project

The following is an example of how a hypothetical KBS project can start.

The goal of the system was to assist the clinician in the intensive care unit (ICU).
The system addressed the following problems:
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� The need for interpretation of measurement values with respect to historical
information about changes in a patient’s status and therapy.

� The difficulty of directly relating measurement values to a therapeutic recom-
mendation.

The system was designed to perform the following tasks in the ICU:

� Predict the initial setting of the mechanical ventilator to assist the patient to
breathe.

� Suggest adjustments to treatment by continuous reassessment of the patient’s
condition.

� Summarise the patient’s physiological status.
� Maintain a set of patient’s specific expectations and goals for future evaluation.
� Aid in the stabilisation of the patient’s condition.

The basic procedure for obtaining information and developing the system is out-
lined in Figure 1.2.

The knowledge elicitation sessions resulted in a set of rules

A prototype was developed and shown to the clinicians

Feedback from the prototype was used to refine the system
and rule set

The loop was repeated a number of times until the final
system was obtained

The system was tested on over 50 patients
The majority of the tests showed a close agreement

between the KBS and the consultant

FIGURE 1.2. Knowledge-based system development process.

One of the main queries in the project was from the experts providing knowledge for
the system. Obviously, it was essential that the system provided accurate answers,
otherwise patients lives could be at risk. Similarly, experts providing the knowledge
did not want to be blamed if an incorrect response was given by the KBS. These
concerns can be summarised in Figure 1.3.

The main assurance provided by the knowledge engineer and project manager was
that the system was built in accordance with quality assurance standards.

Quality assurance is an essential part of the design of any KBS—especially those
designed for such purposes as:

� railway signalling systems
� alarm systems
� detection of gas leaks
� nuclear power station monitoring and control.
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Whose fault is it if the system fails?

Has the system been developed
to quality standards? 

Do we really know
 if it is correct?

FIGURE 1.3. Safety critical systems.

An error in any of these systems could result in significant risk, including loss of
life. Attention to quality assurance is therefore essential.

The Project Manager’s Dilemma

As well as being skilled in overall project management, a project manager needs
some negotiating skills to try and match the expectations of all parties involved in
a project.

Stakeholder Expectation

Users Want a system that meets their needs
Knowledge engineers Would like to be left alone to carry out their job
Quality manager Require the system to conform to their quality control procedures
Senior management Would like the introduction of the system to go smoothly. They

also want the project on time, within budget and working correctly

Balancing the conflicting requirements will be difficult.

Professionalism

One method of trying to ensure high-quality systems development is to employ
people who belong to a known profession. Membership of a professional body
implies that a certain standard of work will be carried out and that the person will
take pride in doing a good job.

Though the word ‘professional’ is in common usage, most people believe they
understand what it means, we need to look more closely at what precisely defines
a ‘professional’.
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Activity 8
This activity helps you focus on precisely what qualities characterise a profes-
sional or a professional group.

List the words you might normally expect to use or see used when describing
professionalism.

Feedback 8
You may have thought of such terms as:

� expert
� skilled
� integrity

� honesty
� ethical

The main factors that distinguish a professional organisation are as follows:

� Expertise. The individuals within the organisation maintain a current, working
expertise of a given subject.

� Self-regulation. The professional code of conduct and other regulations (such as
code of practice or code of ethics) are self-imposed and made public. Any indi-
vidual that wishes to be recognised as a member of the society must voluntarily
show continuous compliance with such a code.

� World view. All of the above conditions maintain a ‘world view’. This view
does not discriminate nor does it compromise the basic moral principles of any
member of society as a whole.

Professionals are normally recognised as a distinct group of people having es-
tablished some sort of ‘contract’ with society. This contract is typically based
upon a code of conduct or a code of ethics. An individual must adhere to
this code in order to become and stay a member of the particular professional
organisation.

In the United Kingdom, a profession is normally granted by Royal Charter. So if
a profession were to be started for KBS development, a charter would be needed.
The two main conditions for the granting of a charter are as follows:

� It should be in the public interest to regulate members within that body.
� The members should represent a coherent group.

Summary

A knowledge engineer requires a variety of skills ranging from the technical to the
managerial.
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Self-Assessment Question

Knowledge Engineering: Skills Audit

The skills of a knowledge engineer are listed again in the table below.

Define each of these skills and then consider whether or not you have each skill.
Draw up an action plan to acquire the skills you lack or need to improve.

Skill required Explanation/Definition

Knowledge representation
Fact finding
Human skills
Visual skills
Analysis
Creativity
Managerial

Answer to Self-Assessment Question

Skill required Explanation

Knowledge representation Being able to understand the information being provided by the expert
and record this in some appropriate manner

Fact finding Using tools such as interviews, questionnaires and observations to
obtain knowledge from an expert

Human skills Interviewing skill including how to acquire knowledge from an expert
in a friendly and helpful manner

Visualisation skills Being able to visualise the overall design of the system, prior to com-
mitting the ideas to paper

Analysis Working through data and information to find the most appropriate
method of representing it, and identifying links within the data and
information

Creativity Using new ideas or methods of representing data within the structure
of the KBS

Managerial Having good time management and delegation skills to help ensure
that the data is recorded on time and within budget
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SECTION 3: AN INTRODUCTION TO
KNOWLEDGE-BASED SYSTEMS

Introduction

This section introduces some of the software systems used in knowledge engineer-
ing and shows how they work compared to human processing.

Objectives

By the end of the section you will be able to:

� explain the difference between knowledge engineering and artificial intelligence
� define knowledge-based systems (KBSs)
� explain what a KBS can do
� explain the differences between human and computer processing
� provide a brief definition of expert systems, neural networks, case-based reason-

ing, genetic algorithms, intelligent agents, data mining and intelligent tutoring
systems

What Is the Difference Between Knowledge Engineering
and Artificial Intelligence?

To try and provide a simple answer to this question, consider each of the following
life forms:

� Plants
� Fish
� Chimpanzees
� Humans

Now, do the plant and animals in the example above exhibit evidence of intelli-
gence?
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Activity 9
We have noted that a knowledge engineer must be able to capture the be-
havioural skills or knowledge of experts and code these into some KBS. If you
were a knowledge engineer, what particular behavioural skills or knowledge,
in generic terms, would you expect to find in the objects listed below?

If you picture the four objects listed below, this will help you see the different
skills that are displayed by them. Think specifically of the movement (or lack
of) for each object, as well as the communication skills that could be expected.
� A plant
� A fish
� A chimpanzee
� A human.

Feedback 9
The skills may include:

A plant
� Adapt in time and evolve—an individual plant has no skills but as a species

they do.
A fish

� Navigation
� Visual recognition
� Avoid danger.

A chimpanzee
� Language/communication about concrete concepts
� Use of basic tools
� Simple problem solving
� Mimic humans
� Build mental models.

A human
� Language/communication about complex concepts
� Learn from being told
� Learn from the past experience
� Identify cause and effect relationships
� Teach
� Solve complex problems
� Design, plan and schedule
� Create complex abstract models
� Show initiative.
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While we may not consider fish to be intelligent, they do exhibit some complex
characteristics that can be considered aspects of intelligence. They navigate around
the world, and visually recognise other animals. They can also plan to avoid danger.

All these are all aspects of intelligence, and when applied to computer systems
could not be implemented by traditional computing techniques.

Chimpanzees are clearly more intelligent than fish. They have the ability to
use language. They use basic tools, sticks and stones. They can solve simple
problems, mimic humans and have been shown to build mental models of their
environment.

Finally, humans are clearly more intelligent again. They can:

� learn by being told
� learn from past examples and from experience
� teach
� solve complex problems, design, plan and schedule
� create complex, abstract models of the universe.

Further, one common feature that fish, chimpanzees and humans share is that we are
all unique individuals. Within the scope of our mental capacity we have individual
choice and make our own decisions. This again is evidence of intelligence.

The application of artificial intelligence has tried to emulate all of these charac-
teristics within computer systems. Knowledge engineers have the difficult job of
attempting to build these characteristics into a computer program.

By using a range of techniques, including expert systems, neural networks, case-
based reasoning, genetic algorithms, intelligent agents and data mining, we can
get computer systems to emulate some aspects of intelligent behaviour such as:

� making decisions, diagnosing, scheduling and planning using expert systems or
neural networks

� evolving solutions to very complex problems using genetic algorithms
� learning from a single previous example, where this is particularly relevant and

using it to solve a current problem using case-based reasoning
� recognising hand writing or understanding sensory data—simulated by artificial

neural networks
� identifying cause and effect relationships using data mining
� free will, i.e., the ability to take independent actions—simulated by intelligent

agents.

For example, legal systems can suggest suitable fines based on past examples using
case-based reasoning—a type of KBS you will encounter later in more detail.
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Programs can also process human language including grammar checking, sum-
marisation and translation—all of which use natural language processing tech-
niques (not covered in this book).

Artificial intelligence aims to endow computers with human abilities. Often this
involves research into new and novel technologies that might not be immediately
usable.

Knowledge engineering, on the other hand, is the practical application of those as-
pects of artificial intelligence that are well understood to real commercial business
problems such as recognising signatures to detect potential fraud.

What Are KBSs?

Knowledge-based systems are computer programs that are designed to emulate
the work of experts in specific areas of knowledge.

It is these systems that provide the main focus of this book.

There are seven main types of KBS:

1. Expert systems. Expert systems model the higher order cognitive functions of
the brain. They can be used to mimic the decision-making process of human
experts. Typical example applications include planning, scheduling and diag-
nostics systems.
Expert systems are normally used to model the human decision-making process.
Although expert systems contain algorithms, many of those algorithms tend
to be static, that is they do not change over time. While this provides some
certainty in how the system will operate, it does mean that the expert system is
not designed to learn from experience.
It is worth mentioning that expert systems are very often spoken of as synony-
mous with KBSs. However, expert systems are simply a category of KBS.

2. Neural networks. Neural networks, on the other hand, model the brain at a
biological level. Just as the brain is adept at pattern recognition tasks, such as
vision and speech recognition, so are neural network systems. They can learn to
read, can recognise patterns from experience and can be used to predict future
trends, e.g. in the demand for electricity.

3. Case-based reasoning. Case-based reasoning systems model the human ability
to reason via analogy. Typical applications include legal cases, where the knowl-
edge of the law is not just contained in written documents, but in a knowledge
base of how this has been applied by the courts in actual situations.

4. Genetic algorithms. A genetic algorithm is a method of evolving solutions to
complex problems. For example, such a method could be used to find one
of many good solutions to the problem of scheduling examinations (rooms,
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students, invigilators and possibly even equipment) from the millions of possible
solutions.
The term ‘genetic’ refers to the behaviour of algorithms. In this situation, the
behaviour is very similar to biological processes involved in evolution.

5. Intelligent agents. An intelligent agent is, normally, a software program where
its goal or overall task is specified but where the software can make some
decisions on its own
Most agents work in the background (that is they are not seen by the user) and
only appear to report their findings. They may work over the Internet looking for
important information where the user simply does not have time to sift through
all the reports presented to him or her.
Agents often have the ability to learn and make increasingly complex decisions
on behalf of their users. The simplest agents simply retrieve information while
the most complex learn and use deductive reasoning to make decisions.

6. Data mining. Data mining is a term used to describe knowledge discovery
by identifying previously unknown relationships in data. Alternative terms for
mining include knowledge extraction, data archaeology, data dredging and data
harvesting.
The technique relates to the idea that large databases contain a lot of data, with
many links within that data not necessarily becoming evident until the database
is analysed thoroughly. One of the classic examples of data mining concerns the
analysis of sales within supermarkets. Data mining techniques could potentially
identify products often purchased at the same time such as nuts and crisps. By
placing these items next to each other on the supermarket shelf the sales of both
products can be increased as they can now be found easily.
Data mining is used in many different areas of business, including marketing,
banking, retailing and manufacturing. The main aim of data mining in these
situations is to uncover previously hidden relationships and then use this infor-
mation to provide some competitive advantage for the organisation.

7. Intelligent tutoring systems. The interest in computer-based instructional envi-
ronments increases with the demand for high-quality education at a low cost.
Meanwhile, computers become cheaper, more powerful and more user-friendly.
An environment that responds in a sophisticated fashion to adapt its teaching
strategy to the specific learning style of a given student/user is highly attractive.
For a tutoring system to be intelligent, it must be able to react (teach) continu-
ously according to a student’s learning. Most tutoring systems try to use a single
teaching method but with various levels of explanations/examples/disclosure of
domain materials to react to different student’s learning. However, a teacher in
practice will use more than one teaching method in teaching a subject accord-
ing to the type of domain knowledge. In order to be intelligent and effective in
teaching, a tutoring system must be able to provide multiple teaching methods.
An example is available at: http://www.pitt.edu/∼vanlehn/andes.html.
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With the exception of intelligent tutoring systems, the systems mentioned above
are discussed in greater detail later in this book.

What Can KBSs Do?

A KBS can perform many of the tasks undertaken by humans. However, they do
have some limitations, as the examples below explain.

When compared with human expertise—which is often not very accessible since
only one or a few people can consult the expert at once—artificial expertise, once
captured in some form of KBS, is permanent and open to inspection. Expert systems
have been used to capture the knowledge of expert staff who are due to retire and
cannot be replaced, for example.

Where human expertise is difficult to transfer between people, the knowledge
within any KBS can be re-used and copied around the world. Where humans can
be unpredictable, KBSs are consistent. Where human expertise can be expensive
and take decades to develop, KBS can be relatively cheap.

On the other hand, humans are creative and adaptable, where KBSs are unin-
spired and developed for fixed purpose. Humans have a broad focus and a wide
understanding. Knowledge-based systems are focused on a particular problem and
cannot be used to solve other problems.

Humans can fall back on common sense knowledge and are robust to error.
Knowledge-based systems are limited to the technical knowledge that has been
built into them. Humans are also very good at processing sensory information.
While neural networks can also handle sensory data, expert systems are generally
limited to symbolic information.

Summary

There are a variety of KBSs, each designed to attempt to emulate different aspects
of human intelligence, knowledge and behavioural skills.

Self-Assessment Question

For each of the four entities listed below, identify the different behavioural skills or
knowledge they display that contribute or provide evidence of their ‘intelligence’.
For one example of each skill, indicate what type of KBS is designed to emulate it.
A plant
A dog
A dolphin
A human.
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Answer to Self-Assessment Question

You should have been able to answer approximately as follows:

A plant

� Adapt in time and evolve—genetic algorithms.

A dog

� Navigation-expert systems
� Visual recognition—neural networks
� Avoid danger—neural networks.

A dolphin

� Language—neural networks (used in speech recognition) and natural language
processing (not covered in this book)

� Simple problem solving—expert systems
� Build mental models—case-based reasoning-expert systems.

A human

� Reason by analogy—case-based reasoning
� Learn from being told—expert systems
� Learn from past experience—case-based reasoning and neural networks
� Identify cause and effect relationships—data mining and neural networks
� Teach—intelligent tutoring systems
� Solve complex problems—expert systems/genetic algorithms
� Design, plan and schedule—expert systems and genetic algorithms
� Create complex abstract models—expert systems
� Show initiative (or at least emulate individual choice and decision making)—

intelligent agents.

References

Davis, R. (1979). Interactive transfer of expertise: Acquisition of new inference rules.
Artificial intelligence, 12: 121–157.

Debenham, J. K. (1988). Knowledge Systems Design. Prentice-Hall: Englewood Cliffs, NJ.
Drucker, P. F. (1988). The coming of the new organisation. Harvard Business Review,

66(1):39–48.
Fensel, D. (1995). The Knowledge Acquisition and Representation Language KARL. Kluwer

Academic Publishers: Amsterdam.
Harry, M. (1994). Information Systems in Business. Pitman Publishing: Boston, MA, p. 50.
Hayes, R. (1992). The measurement of information. In Vakkari, P. and Cronin, B. (editors),

Conceptions of Library and Information Science. Taylor Graham: London, pp. 97–108.
Laudon, K. C. and Laudon, J. P. (1998). Management Information Systems: New Approaches

to Organisation and Technology, 5th ed. Prentice-Hall: Englewood Cliffs, NJ, p. 8.



An Introduction to Knowledge Engineering 25

Long, L. and Long, N. (1998). Computers, 5th ed. Prentice-Hall: Englewood Cliffs, NJ,
p. 5.

McNurlin, B. and Sprague, R. H., Jr. (1998). Information Systems Management in Practice,
4th ed. Prentice-Hall: Englewood Cliffs, NJ, p. 197.

Senn, J. A. (1990). Information Systems in Management. Wadsworth Publishing: Belmont,
CA, p. 58.

Zachman, J. (1987). A framework for information systems architecture. IBM Systems Jour-
nal, 26(3):276–292.



2
Types of Knowledge-Based Systems

Introduction

This chapter builds on the brief introduction to different types of knowledge-based
systems from the first chapter and provides you with the opportunity to explore
them in greater depth.

The chapter consists of six sections:

1. Expert systems
2. Neural networks (NNs)
3. Case-based reasoning (CBR)
4. Genetic algorithms
5. Intelligent agents
6. Data mining.

Objectives

By the end of the chapter you will be able to:

� describe the characteristics of a knowledge-based system
� explain the main elements of knowledge-based systems and how they work
� evaluate the advantages and limitations of knowledge-based systems
� identify appropriate contexts for the use of particular types of knowledge-based

systems.

26
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SECTION 1: EXPERT SYSTEMS

Introduction

This section provides you with an introduction to expert systems and their use
within knowledge engineering.

Objectives

By the end of this section you will be able to:

� describe expert systems
� explain the main elements of an expert system and how they work
� evaluate the advantages and limitations of expert systems
� recognise appropriate contexts for the application of expert systems.

What Are Expert Systems?

You already know, knowledge acquisition is the process of acquiring knowledge
from a human expert, or a group of experts, and using the knowledge to build
knowledge-based systems.

Expert systems are computer programs designed to emulate the work of experts in
specific areas of knowledge.

Activity 1
This activity give you direct experience of an expert system.
1. Visit the ESTA (Expert System Shell for Text Animation) web inter-

face at: http://www.visual-prolog.com/vipexamples/esta/pdcindex.html (see
Figure 2.1)
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FIGURE 2.1. The expert system shell for text animation web interface.

2. Select Car Fault Diagnosis in the Select theme box.
3. Press Load.
4. Press Begin Consultation on the next screen.
5. Work your way through the consultation process during which you will be

asked several questions to determine the cause and possible solution of a
problem with a vehicle. You can treat this experience this consultation as
real as you like. The important thing from your point of view is to consider
at each stage how the program is processing the data you provide to it.

6. Choose ‘car’ as the type of car.
7. Press Continue.
8. Choose ‘the car smells of gasoline’ as the problem.
9. Press Continue.

10. Choose Yes when asked ‘Is the smell only present when the engine is
running?’

You will find a free Personal Edition of Visual Prolog 5.2 (the software
used to create ESTA) on the web at: http://www.visual-prolog.com/vip/
vipinfo/freeware version.html. You will need to register it online in order to
fully activate it.
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Definition of an Expert System

The British Computer Society defines an expert system as follows:

An expert system is regarded as the embodiment within the computer of knowledge based
component from an expert skill, in such a form that the system can offer intelligent advice or
take an intelligent decision about a processing function. A desirable additional characteristic,
which many would consider fundamental, is the capability of the system, on demand, to
justify its own line of reasoning in a manner directly intelligible to an enquirer. The style
adopted to attain these characteristics is rule based programming.

We can see from this definition the main characteristics of an expert system. We
can see that an expert system uses knowledge, and therefore must have some way
of storing this knowledge. It must have some inference mechanism, i.e., some way
of processing knowledge to reach a conclusion. Finally, an expert system must be
capable of acting as a human expert; i.e., to a high level of decision-making within
a particular area.

The following features are also essential to an expert system:

� Having a highly focused topic, or domain, for the expert systems to solve makes
them much easier to develop.

� Being able to justify their own reasoning helps to show why expert systems have
made particular recommendations.

Main Elements of an Expert System

The elements of an expert system are as follows:

� A knowledge-based module. This is where the knowledge is stored in a particular
representation.

� An inference engine. This is a program that uses the knowledge base (KB) to
reach conclusions. Clearly, it must understand the format of the KB with which
it reasons.

� An explanatory interface with which the human interacts.
� A knowledge acquisition module that helps when building up new KBs.

Figure 2.2 provides an overview of the elements required in building and using an
expert or KB system. It also shows the key elements just outlined above.
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Expert Database

Acquisition module

Empty KB

Inference engine

Explanatory interface

Medical knowledge

User

Core

of ES

Car mechanic,s knowledge

Design knowledge

FIGURE 2.2. Elements required in building and using an expert system.

Different Types of Expert Systems

Types of expert systems currently available are noted below. The examples of
expert systems (some of which are still interesting for historical reasons) are given
in bold letters.

Type of system Examples

Diagnostic systems Doctor, technician, car mechanic, etc.
MYCIN—an interactive program that diagnoses certain infectious dis-
eases, prescribes anti-microbial therapy, and can explain its reasoning in
detail. In a controlled test, its performance equalled that of specialists.
Since it was designed as a consultant for physicians, MYCIN was given
the ability to explain both its line of reasoning and its knowledge. Be-
cause of the rapid pace of developments in medicine, the KB was designed
for easy augmentation. Although MYCIN was never used routinely by
physicians, it has substantially influenced other artificial intelligence (AI)
research.
VM – The ventilator manager program interprets online quantitative data in
the intensive care unit and advises physicians on the management of post-
surgical patients needing a mechanical ventilator to help them breathe.
While based on the MYCIN architecture, VM was redesigned to allow for
the description of events that change over time. Thus, it can monitor the
progress of a patient, interpret data in the context of the patient’s present and
past condition, and suggest adjustments to therapy. Some of the program’s
concepts have been built directly into more recent respiratory monitoring
devices.
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Type of system Examples

Identification systems Materials spillage, bacterial agent identifier, etc.
DENDRAL – The DENDRAL Project—one of the earliest expert
systems—began as an effort to explore the mechanisation of scientific
reasoning and the formalisation of scientific knowledge by working within
a specific domain of science, organic chemistry. Its performance rivals that
of human experts for certain classes of organic compounds and has resulted
in a number of papers that were published in the chemical literature.

Decision support systems Planning, scheduling, designing systems.
DART – used to assist in deployment of military resources
XCON – assists in configuring mainframe computers (developed by DEC).

Activity 2
The main elements of an expert system are shown in Figure 2.2. Note that the
expert, database and user are outside the expert system itself but are obviously
required to build and then query the expert system.

Using the labels provided, can you explain the purpose of each of the main
elements of an expert system?

Expert
Database
Acquisition module
Knowledge base
Inference engine
Explanatory interface
User

Feedback 2
Expert—human expert to provide the knowledge for the expert system.

Database—some knowledge acquisition methods use data in databases to au-
tomatically generate new rules, e.g. weather data can be used to generate rules
that will enable prediction of tomorrow’s weather.

Acquisition module—obtains appropriate knowledge from the human expert
and the database ready for input to the KB of the expert system.

Knowledge base—retains the knowledge and rules used by the expert system
in making decisions.

Inference engine—system that reasons to provide answers to problems placed
into the expert system. The inference engine uses knowledge from the KB to
arrive at a decision.

Explanatory interface—to provide the user with an explanation on how the
expert system reached its conclusion.

User—the human being using the expert system!
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Many expert systems are built using a generic ‘shell’. An expert system shell
consists of the programming components of an expert system but without a KB.
Using a shell, a knowledge engineer can quickly enter a new KB and, without the
need for any programming, create a complete working expert system.

How Do Expert Systems Work?

The basic components of an expert system are a knowledge base or KB and an in-
ference engine. The knowledge in the KB is obtained by interviewing people who
are expert in the area in question. The interviewer, or ‘knowledge engineer’, organ-
ises the information elicited from the experts into a collection of rules, typically
of ‘if-then’ structure. Rules of this type are called production rules. The inference
engine enables the expert system to make deductions using the rules in the KB and
applying them to a particular problem. The expert system can be used many times
with the same knowledge using that knowledge to solve different problems (just
like a doctor uses their knowledge many times to diagnose and cure lots of patients).

For example, if the KB contains production rules if x then y and if y then z and
the inference engine is informed that x is true then the inference engine is able to
deduce that z is true. For example, the expert system might ask if the patient has a
rash and if the answer is affirmative, the system will proceed to infer the condition
the patient is suffering from.

Strengths and Limitations of Expert Systems

Expert systems are designed to replace human knowledge in some situations;
overcoming not just the problems of obtaining that knowledge, but also problems
involved with humans providing knowledge.

Activity 3
Given the areas in which expert systems can be used, what do you think are the
advantages of using an expert system?

What do you see as the disadvantages of using expert systems?

Feedback 3
Some of the advantages of using expert systems are noted below.

Human expertise can be expensive. After an expert system has been built, the
only cost is providing the hardware to run the system on.

Human advice can be inconsistent. Human advice may be adversely affected
by tiredness, busy diaries, personal problems, etc. Computer advice will always
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be based on the rules within the expert system, and those rules can be checked
by other experts to ensure their validity.

Human knowledge may be lost. That is humans tend to die eventually, or their
knowledge may be lost in other ways such as brain disease or simply changing
jobs.

Human knowledge can only be accessed in one place at one time—that is where
the expert happens to be. However, an expert system can be duplicated as many
times as required or accessed online.

In contrast expert systems tend to lack:
� common sense—humans may draw conclusions based on their overall view

of the world; expert systems do not have this information
� inspiration or intuition—computers tend to lack these attributes
� flexibility to apply their knowledge outside a relevant domain.
Humans understand the limits of their knowledge and will seek help when
confronted by complex or novel situations. Unless programmed specifically,
expert systems will not recognise their limitations and fail when confronted
with new situations.

Activity 4
This activity helps you evaluate expert systems from the point of view of their
limitations.

On the basis of what you have learned so far about expert systems, suggest
three main limitations and three main strengths.

Feedback 4
You should have been able to suggest three of the following limitations:
� Narrow knowledge domain, they are developed to solve a very specific prob-

lem
� Knowledge acquisition from experts
� Need for commitment from expert(s)
� Cannot generalise
� Cannot apply ‘common sense’
� Cost of development and maintenance
� Expert systems think mechanically and lack the power of human creativity
� Expert systems require regular maintenance to update with new knowledge.

An expert system responsible for providing advice on legal or tax matters for
example, would need frequent re-programming.

� A wide range of sensory experience is available to human experts. Expert
systems are largely confined to abstracted symbolic input. The knowledge
acquisition process necessary for extracting knowledge from experts is
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also problematic. Asking experts to articulate their ‘intuition’ in terms of a
systematic process of reasoning is sometimes compared to extracting a tooth
with rusty pliers.

And three of the following strengths:
� Reasoning using previously established rules
� Separation of KB and the inferencing mechanism which allows either to be

updated separately
� Explanation capability
� Quick solution—efficiency
� Standard output—consistency
� Replication
� Perform repetitive tasks and free-up human experts
� Provide increased problem-solving abilities to the less expert.

Where Are Expert Systems Used?

There are various important guidelines that help when deciding whether a problem
is suitable for an expert system solution.

Expert systems are generally suitable in situations where:

� The problem is important to business—meaning that time or money or both can
be saved by using the expert system.

� The expertise required is available and stable. In other words human experts
are available who can provide the appropriate knowledge, without ambiguity, to
build the expert system rule base.

� The knowledge required is scarce—at least in terms of human experts available
to provide answers to queries within that knowledge domain.

� The problem is recurrent—so the expert system will be used over many geo-
graphical locations or a long period of time.

� The problem is at the right level of difficulty. In some situations, it may be
easier to train more human experts where a limited amount of knowledge is
required. Alternatively, extremely complex knowledge domains may require
human expertise only.

� The domain is well defined and of a manageable size. Particularly large domains
or domains with no easily defined limits are difficult to program due to the large
number of rules that are required.

� The solution depends on logical reasoning, not ‘common sense’ or general
knowledge. The knowledge-based system needs definite rules to make deci-
sions as it tends to lack any intuition that humans occasionally use in making
decisions.
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Current Research in Expert Systems

The following web addresses contain information on research in expert systems:

FuzzyJ ToolKit for the Java (tm) Platform & FuzzyJess at: http://ai.iit.nrc.ca/
IR public/fuzzy/fuzzyJToolkit.html

Legal Information Systems—University of Warwick at: http://www.law.warwick.
ac.uk/ltj/2-2h.html

Expert Systems in Corrosion at: http://www.corrosionsource.com/technicallibrary/
corrdoctors/Modules/Knowledge/ES.html

Berkeley Expert Systems Technology at: http://best.me.berkeley.edu/
Papers on Expert Systems can be found via Citeseer at: http://citeseer.ist.psu.edu/

Summary

In this section you learned how expert systems are designed to mimic human
knowledge in specific domains or knowledge areas. You also discovered that they
are not designed to be general purpose problem-solving systems, but do have some
advantages over humans.

Self-Assessment Question

Do some browsing on the Internet and find four expert systems. Explain briefly
how each is used and the specific advantages each has over human systems in the
same context.

Answer to Self-Assessment Question

Examples of the sites you could visit include the following.

Example Web address

Applied expert systems—production of ex-
pert systems for monitoring traffic on net-
works

http://www.aesclever.com/

Examples of expert system use in agricul-
ture

http://www.manage.gov.in/managelib/faculty/
PanduRanga.html

Graduate screening expert system for
university—see if you can gain admission

http://www.aiinc.ca/demos/grad.shtml

Example of an expert system to identify the
differences between coins

http://www.hf.uio.no/iakk/roger/
lithic/expsys.html
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SECTION 2: NEURAL NETWORKS

Introduction

This section provides an introduction to NNs and their place in knowledge-based
system design.

Objectives

By the end of the section you will be able to:
� describe the characteristics of NNs
� evaluate the usefulness of NNs in particular contexts.

What Are NNs?

Starting with measured data from some known or unknown source, a NN may
be trained to perform classification, estimation, simulation and prediction of the
underlying process generating the data. Hence, artificial neural networks (ANNs),
or neural nets, are software tools designed to estimate relationships in data. An
estimated relationship is essentially a mapping, or a function, relating raw data to
its features.

The general area of ANNs has its roots in our understanding of the human brain.
In this regard, initial concepts were based on attempts to mimic the brain’s way
of processing information. Efforts that followed gave rise to various models of
biological NN structures and learning algorithms.

Differences in Human and Computer Processing

The basic features in human and computer processing are shown in Figure 2.3.

Humans are very good at inferring conclusions from limited amounts of data while
computers tend to excel at problems where a large number of repetitive or similar
operations are required.

Computers are built with many millions of individual switches within a single
processor. They can perform millions of operations per second and, assuming that
there is no hardware failure, they can carry out these operations with absolute
mathematical precision.

In contrast, a human brain has about 10 billion neurons. Each neuron averages sev-
eral thousand connections. Each can perform hundreds of operations each second
only with relatively low reliability. Neurons die frequently and are not replaced.

However, these problems are overcome by the capability for parallel processing
that provides the brain with the ability to handle missing or erroneous data.
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The Brain 
Pattern recognition
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Complexity
Noise tolerant 

The Machine
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Precision
Logic

FIGURE 2.3. Features of hu-
man and machine processing.

Structure of Human and Computer Processing Units

A typical human neuron is shown in Figure 2.4.

The features of the individual parts of the neurons are listed in the table below.

Part Feature

Soma or nucleus Main body of the neuron
Dendrite Filaments providing inputs to the cell
Axon Sends output signals from the cell
Synapse A junction that allows signals to pass depending

on the strength of the synapse

Dendrites Axon

Nucleus

Synapse

Cell bodyFIGURE 2.4. Structure
of a biological neuron.
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The state of the neuron is controlled by the signals received from its dendrites.
When sufficient signal strength is received, then the nucleus becomes ‘excited’
and passes this information along axons to other cells.

A Classic
Artificial Neuron

+1
a0

a1

a2

an

wj2

wjn

Sj f (Sj)

wj1

wj0

Xj

FIGURE 2.5. Artificial
neuron.

A biological reason can be simulated using a computer (see Figure 2.5). In Figure
2.5, a0 to an represent the inputs (numbers) into the neuron. The weights attached
to each input are shown by wj0 to wjn [numerical indicators of the strength of the
synapse (S)]. Depending upon the actual inputs and the weights assigned to the
inputs, the neuron may or may not fire. If it fires, then the output X j is produced,
which in turn may form an input to another neuron in the system. These inputs,
multiplied by the weights, are added together and compared with some threshold
value to determine if this neuron should fire. This is then processed by a function
( f ) to determine the exact output from the neuron.

Activity 5
An artificial neuron applet is available at:
http://icwww.epfl.ch/mantra/tutorial/english/aneuron/html/index.html

Follow the instructions on the page to experiment with inputs (x1 and x2) and
weights (w1 and w2).

Neurons are not designed to work alone. They are connected together with many
others to form a network. A computer neuron will ‘fire’, that is pass on an electrical
signal to other neurons. This may in turn cause other neurons to fire. The ‘firing’
of one neuron is controlled by the total of the inputs to that neuron within a given
period of time. The total input to a neuron is calculated from the number of inputs
and the strength of the signal from each of those inputs. Thus, in Figure 2.5 the
total input is (a0 × wj0) + (a1 × wj1) + (a2× wj2) . . . (an × wjn).
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The strength of the synapses is determined by the weight given to each one. Varying
the weights within the network helps to determine whether or not a particular
neuron fires.

Main Elements of NNs

An ANN is either a hardware implementation or a computer program that strives to
simulate the information processing capabilities of its biological equivalent. Arti-
ficial neural networks are typically composed of a great number of interconnected
artificial neurons. The artificial neurons are simplified models of their biological
counterparts.

The typical characteristics of ANNs differ very much from what is normally ex-
pected of a computer. These new properties include:

� adaptive learning
� self-organisation
� error tolerance
� real-time operation
� parallel information processing.

Learning, in the context of ANNs, means that the network can adopt different
behaviour on the basis of the data that is given to the network. Unlike telling the
network how to react to each item of data separately, as would be the case in the
conventional programming, the network itself is able to find properties in the pre-
sented data. Learning can be continued and adapted as new data is made available.

As data is given to the ANN, it adjusts weights to reflect the properties of the given
data. In most ANN models, the term self-organisation refers to the determination
of the connection strengths between neurons. The way the internal structure of
an ANN is altered is determined by the learning algorithm used. Several distinct
NN models can be distinguished both from their internal architecture and from the
learning algorithms that they use.

Error tolerance is an important aspect of an ANN. It refers to the network’s ability to
model the essential features of the given data. In other words, an ANN is capable of
finding a generalisation for the data. This powerful characteristic makes it possible
to process new, imperfect and distorted data with NNs.

Activity 6
An ANN applet for the Travelling Salesman problem is available at:
http://www.patol.com/java/TSP/index.html.

Follow the instructions on the page to train and test the network.
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Activity 7
A NN has been set up to provide processing of information for the purposes of
face recognition. On the basis of your experience with the Travelling Salesman
network and any other appropriate experience, what allowances might it have
to make in order to account for new, imperfect and distorted data?

Feedback 7
You should have realised that the NN would need to make allowances for
variations in facial characteristics such as:
� spectacles
� hair length
� makeup
� skin tone.

In addition, variations in the amount of light cast on the face or the angle at
which it is viewed would need to be taken account of in determining whether
a particular face matched the one on record or not.

Due to the parallel nature of the information processing in ANNs, real-time oper-
ation becomes possible. Basically, three entities characterise an ANN:

� The network topology or interconnection of neural ‘units’
� The characteristics of individual units or artificial neurons
� The strategy for pattern learning or training.

Decisions are made depending on the importance or weight of each input going
into a neuron. As those weights change, then this delays or stops the neuron firing,
which in turn affects the decision being taken. In other words, NNs can amend
their outputs, based on the experience they gain, by amending the weights assigned
to each output in the system.

Each neuron will be given a threshold over and above which it fires, sending a
message to the next neuron in the system. For example, the weighted inputs to a
neuron could be as follows.

Ability to pass degree:

Works hard 0.2
A level points 0.3
Interested in subject 0.3

The sum of the weighted inputs is 0.8. If the neuron is set to fire at a value of 1,
then in this example it will not fire.



Types of Knowledge-Based Systems 41

The initial value for the weights can be set by randomly generated numbers. Real
world examples can then be fed through the neuron (training) and the results
checked (testing) to see whether or not the neuron fired at the correct time. For
example, if the network indicated that Bill obtained a degree with the input weights
above, then it is in error. This means that the weights need to be changed to reflect
the real world example. Standard values might therefore be fed into the network to
increase or decrease the input values. For example, all values could be increased
by 15% or decreased by 10%.

Activity 8
Here are the inputs to a neuron that is being used to predict whether or not a
driving test will be passed.

Criteria True/False (1/0) Weighting
Hours driving experience > 40 1 0.3
Age > 22 1 0.2
Power steering in car? 1 0.2
Qualified instructor? 1 0.6

The neuron is set to fire, i.e., a pass is expected, where the combined inputs ×
weights >0.7.

Richard is 23 years old and has just taken his driving test for the first time. He
was taught by his father in the family car without power steering (Richard’s
father is a solicitor). So far he has had 55 hours driving experience. He has just
passed his test.

Jennifer is 21 years old. She has been learning to drive for 30 hours
with a qualified instructor in a power-assisted car. She has just passed her
test.

If the results of the real world data show that the neuron is firing incorrectly,
then the weights are adjusted by 10%.

Show whether or not the neuron works for Richard, then Jennifer.

Feedback 8
The relevant weights to use for Richard are:

Criteria True/False (1/0) Weighting
Hours driving experience > 40 1 0.3
Age > 22 1 0.2
Power steering in car? 0 0.2
Qualified instructor? 0 0.6
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Giving a value of 0.5. As Richard has passed his test, then the weights of the
two inputs used appear to be too low (<0.7); they will be increased by 10%.
Note that the 10% increase is still not sufficient to predict Richard passing. It
would take several instances in which the weights need to be increased in order
to end up with a better performing system.

The relevant weights to use for Jennifer are now:

Criteria True/False (1/0) Weighting
Hours driving experience > 40 0 0.33
Age > 22 0 0.22
Power steering in car? 1 0.2
Qualified instructor? 1 0.6

The weights applicable to Jennifer have a value of 0.8, which suggests that
she should pass her test. As a pass was obtained, then the system was cor-
rect in predicting this, no alternation is necessary. If the system predicted a
pass and the student failed then the weights would have been reduced (not
increased).

The process of amending the weights of inputs will continue until the network
provides the correct output for as many different inputs as possible.

Multi-Layer Perceptron

One architecture of NNs is a multi-layer perceptron. It learns by applying what
is known as the back propagation algorithm. A diagram of this type of system is
shown in Figure 2.6.

The input layer introduces input values into the network ready for processing. No
actual processing takes place at this stage.

The hidden layer(s) contains adjustable weights providing links between proces-
sors (neurons). Varying the weights will affect the accuracy of the decision-making
performed by the system. The aim of human or computer training is to assign cor-
rect weights to each connections so that the NN makes correct decisions.

Normally, two hidden layers are sufficient to solve any problem, however, provid-
ing more layers may increase the accuracy of decision making.

The output layer passes the output from the network to the outside world, normally
via the explanatory interface.
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FIGURE 2.6. Learning by multi-layer perceptron.

The Back Propagation Algorithm

There is a difficulty in training a multi-layer perceptron network, i.e., how are the
weights adjusted in the middle of the network. Thankfully back propagation, a
well-known training algorithm solves this problem. It works in the following way:

1. An error value is calculated for each node in the outer layer.
2. The weights feeding into each node, in this layer, are adjusted according to the

error value for that node (in a similar way to the previous example).
3. The error, for each of the nodes, is then attributed to each of the nodes in the

previous layer (on the basis of the strength of the connection). Thus the error is
passed back through the network.

4. Steps 2 and 3 are repeated, i.e., the nodes in the preceding layer are adjusted,
until the errors are propagated backwards through the entire network, finally
reaching the input layer (hence the term back propagation).

One minor complication remains—this training algorithm does not work when
the output from a node can only be 0 or 1. A function is therefore defined that
calculates the output of a neuron on the basis of its input where the output varies
between 0 and 1.

A set of training data will be presented to the network one item at a time. Whenever
the networks output is incorrect the weights are adjusted slightly as indicated. When
all of the training data has been presented to the network once this is called an
epoch (pronounced e-pok). An epoch will need to be presented to the network
many times before training is complete.
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Supervised and Unsupervised Learning

Artificial neural networks can be ‘trained’, in one of two ways.

Supervised Learning

The system can learn from the accuracy of its past decision-making. Where de-
cisions are deemed ‘incorrect’ by the user, then the chain of reasoning (i.e., the
strength of the weights attached to each input that gave the conclusion) is reduced
to decrease the chance of similar inputs providing the same incorrect conclusion.

Unsupervised Learning

In unsupervised learning, the network is provided with inputs but no indication
of what the output should be. The system itself must then decide what features it
will use to group the input data. This is often referred to as self-organisation or
adaption. The goal, then, is to have the network itself begin to organise and use
those inputs to modify its own neurons’ weights.

Adaptive Resonance Theory

Unsupervised learning is often used to classify data. In this case, the classification
is done with a clustering algorithm. Adaptive resonance theory was developed
to account for changes in the input data that supervised NNs were not able to
handle. Basically, programmers wanted to design a system that could modify itself
in response to a changing input environment. If changes are frequent, the ability
to adapt is essential for the program. Without this ability to adapt, the system’s
accuracy begins to decrease rapidly. Creating a network that changes with each
input is therefore desirable.

However, as the network is modified to account for new inputs, its accuracy in
dealing with old inputs decreases. This problem could be fixed if information
from old inputs is saved. The dichotomy between these two desirable network
characteristics is called the stability–plasticity dilemma. Adaptive resonance the-
ory was developed to resolve this issue.

The different types of ANN architecture are summarised in Figure 2.7.

The multi-layer perceptron network, descried earlier, is one of the most commonly
used architectures.

Radial Basis Function Networks

Radial basis function (RBF) networks are a type of ANN for application to
problems of supervised learning (e.g. regression, classification and time series
prediction).
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FIGURE 2.7. Different artificial neural network architectures.

Activity 9
This activity will help you visualise a RBF network.

Visit the following URL: http://diwww.epfl.ch/mantra/tutorial/english/rbf/html/

The page contains a Java applet which demonstrates some function approxi-
mation capabilities of a RBF network

Follow the instructions on the web page.

Activity 10
This activity provides you with a second opportunity to work with a RBF
network.

Visit the following URL: http://
www.mathworks.com/products/demos/nnettlbx/radial/

This is a series of illustrations showing how a neural network toolbox can be
used to approximate a function. This demonstration uses the NEWRB function
of the Matlab software (available from http://www.mathworks.com/) to create
a radial basis network that approximates a function defined by a set of data
points.

Self-Organising Maps

Although there has been considerably more progress in supervised learning re-
search, Tuevo Kohonen has had some success with his development of a self-
organising map (SOM). The SOM (also known as the Kohonen feature map)
algorithm is one of the best-known ANN algorithms. Self-organising maps are a
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data visualisation technique that reduces the dimensions of data through the use
of self-organising NNs. In contrast to many other NNs using supervised learning,
the SOM is based on unsupervised learning.

The way SOMs go about reducing dimensions is by producing a map of usually
one or two dimensions that plot the similarities of the data by grouping similar
data items together. So, SOMs accomplish two things, they reduce dimensions and
display similarities.

Activity 10
A SOM applet—where data is represented by colour—is available at:
http://davis.wpi.edu/∼matt/courses/soms/applet.html

Try several iteration settings (e.g. 100, 500 and 1000) and compare the differ-
ences in accuracy of colour grouping.

The SOM is a unique kind of NN in the sense that it constructs a topology preserving
mapping from the high-dimensional space onto map units in such a way that relative
distances between data points are preserved. The map units, or neurons, usually
form a two-dimensional regular lattice where the location of a map unit carries
semantic information. The SOM can therefore serve as a clustering tool of high-
dimensional data. Because of its typical two-dimensional shape, it is also easy to
visualise.

The first part of a SOM is the data. The idea of the SOMs is to project the n-
dimensional data into something that is better understood visually. In the case of
the applet you tried in the activity above, one would expect that pixels of a similar
colour would be placed near each other. You might have found that the accuracy
of arranging the pixels in this way increased the more iterations there were.

The second components to SOMs are the weight vectors. Each weight vector has
two components: data and ‘natural location’. The good thing about colours—as
in the SOM applet—is that the data can be shown by displaying the colour, so in
this case the colour is the data, and the location is the position of the pixel on the
screen. Weights are sometimes referred to as neurons since SOMs are a type of
NNs.

The way that SOMs go about organising themselves is by competing for rep-
resentation of the samples. Neurons are also allowed to change themselves by
learning to become more like samples in hopes of winning the next competition.
It is this selection and learning process that makes the weights organise them-
selves into a map representing similarities. This is accomplished by using the very
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simple algorithm:

Initialise Map
For t from 0 to 1
Randomly select a sample
Get best matching unit
Scale neighbours
Increase t by a small amount
End for

The first step in constructing a SOM is to initialise the weight vectors. From there
you select a sample vector randomly and search the map of weight vectors to find
which weight best represents that sample. Since each weight vector has a location,
it also has neighbouring weights that are close to it. The weight that is chosen is
rewarded by being able to become more like that randomly selected sample vector.
In addition to this reward, the neighbours of that weight are also rewarded by being
able to become more like the chosen sample vector. From this step we increase t a
small amount because the number of neighbours and how much each weight can
learn decreases over time. This whole process is then repeated a large number of
times, usually more than 1000 times.

In the case of colours, the program would first select a colour from the array of
samples such as green, then search the weights for the location containing the
greenest colour. From there, the colours surrounding that weight are then made
more green. Then another colour is chosen, such as red, and the process continues
(see Figure 2.8).

Activity 11
This activity will help you visualise the concept of SOMs.

Nenet (Neural Networks Tool) is a Windows application designed to illustrate
the use of a SOM. Self-organising map algorithm is categorised as being in the
realm of NN algorithms and it has been found to be a good solution for several
information problems dealing with high-dimensional data.
1. Visit the Nenet Interactive Demonstration page at: http://koti.mbnet.fi/∼

phodju/nenet/Nenet/InteractiveDemo.html.
2. Click on the ‘Open the demonstration’ link.
3. Proceed through the demonstration, reading the onscreen explanations as

you do so.

You may also wish to download and install the demonstration version of Nenet
which has the following limitations on the data and map sizes:
� Maximum map size: 6 × 6 neurons.
� Maximum number of data vectors: 2000.
� Maximum data dimension: 10.
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FIGURE 2.8. Self-organising map
after 1000 iterations.

SOMs Reducing Dimensions—What Does This Mean
in Practise?

Imagine a new celebrity becomes very famous and their face is shown on televi-
sion, on large posters and in the press. Having seen their face on several occasions
you begin to recognise their features. You won’t remember every detail and every
pixel of a high resolution photograph but the essential features will be stored in
your brain. On seeing a new high resolution photograph your brain will pick out the
same essential features and compare them with the details stored in your memory.
When a match occurs you will recognise the face in the photograph. By storing only
the essential features your brain has reduced the complexity of the data it needs to
store.

Why is This Unsupervised Learning?

For many of the things you learn there is a right and wrong answer. Thus if you were
to make a mistake a teacher could provide a correct response. This is supervised
learning. SOMs group similar items of data together. When picking out the features
of a face various features can be chosen, eye colour, the shape of the nose etc. The
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features you pick can affect the efficiency of the system but there is no wrong or
right answer—hence this task is an example of unsupervised learning.

Other examples of SOMs available on the Internet are:

� The World Poverty Map at: http://www.cis.hut.fi/research/som-research/
worldmap.html

� WEBSOM—SOMs for Internet exploration at: http://websom.hut.fi/websom/

Using ANNs

In the previous activity, you observed a demonstration of a NN—in the form of a
SOM. You should have noted a definite sequence of steps in the process.

Activity 12
This activity helps you recognise the significant stages in the process of applying
a NN to data analysis problems.

Write down what you consider to be the main stages in the demonstration of the
Nenet software when applied to the example problem illustrated in the demo.

Under what circumstances could one of the stages has been skipped?

Why is this possible?

How is ‘Training Length’ measured?

Feedback 12
You should have been able to identify the following stages:
� Initialise a new map
� Set initialisation parameters
� Train the map to order the reference vectors of the map neurons (not if using

linear initialisation)
� Train the map (again)
� Test the map
� Set test parameters.

Had linear initialisation type been selected, the first training step could have
been skipped.

The training process could be run twice. The first step is to order the reference
vectors of the map neurons. The linear initialisation already does the ordering
and that is why this step can be skipped.

Training length is the length of the training measured in steps, each correspond-
ing to one data vector. If the specified number of steps exceeds the number of
data vectors found in the file, the set of data is run through again.
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Choosing a Network Architecture

Although certain types of ANN have been engineered to address certain kinds of
problems, there exist no definite rules as to what the exact application domains of
ANNs are. The general application areas are:
� robust pattern recognition
� filtering
� data segmentation
� data compression
� adaptive control
� optimisation
� modelling complex functions
� associative pattern recognition.

Activity 13
Search the Internet for references to the Hopfield Associative Memory Model.

You will find a page containing some Java applets illustrating the Hopfield
model at:http://diwww.epfl.ch/mantra/tutorial/english/hopfield/html/

and the Boltzmann machine at:http://www.cs.cf.ac.uk/Dave/JAVA/boltzman/
Necker.html

Run the applets with different parameters.

Figure 2.9 shows how some of the different NN architectures have been used.

Network model

Application Back propagation Hopfield Boltzmann machine Kohonen SOM

Classification � � � �
Image processing � �
Decision making � � �
Optimisation � � �

FIGURE 2.9. The use of well-known neural networks.

Benefits and Limitations of NNs

The benefits of NNs include the following:
� Ability to tackle new kinds of problems. Neural networks are particularly useful

at finding solutions to problems that defeat convention systems. Many decision
support systems now incorporate some element of NNs.

� Robustness. The networks are more used to dealing with less structured problems.
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The limitations of NNs include:

� Artificial neural networks perform less well at tasks humans tend to find difficult.
For example, they are less good at processing large volumes of data or performing
arithmetical operations. However, other programs are good at these tasks and so
they compliment the benefits of ANNs.

� Lack of explanation facilities. Unlike many expert systems, NNs do not normally
include explanation facilities making it difficult to determine how decisions were
reached.

� Test data. ANNs require large amounts of data. Some of the data is used for
training and some to ensure the accuracy of the network prior to use.

Condition Monitoring

Condition monitoring is the name given to a task for which NNs have often been
used, but what is it?

Every car driver listens to the noises made by their car. The noises will change
depending upon many things:
� the surface of the road
� whether the road is wet or dry
� the speed the car is going
� the strain the engine is under.

While the car makes a range of normal noises other noises could indicate a problem
that needs to be addressed. For example a tapping noise can indicate a lack of oil.
If this is not rectified serious and expensive damage could be caused to the engine.
Over time car drivers become familiar with the noises their car makes and will
mostly ignore them until an unusual sound occurs. When this does occur a driver
may not always be able to identify the cause but if concerned will get their car
checked by an engineer. This allows maintenance to be carried out before serious
damage occurs.

In the example above condition monitoring is something that the car driver is
subconsciously doing all of the time—i.e., by listening to the noises the car makes
they are monitoring the condition of the car and will initiate maintenance when
required.

Just as a car requires maintenance so do many machines. Businesses, factories and
power plants depend upon the correct functioning of a range of machines including,
large extractor fans, power generators and food processors. Catastrophic failure in
a large machine can in some cases cause an entire business to close down while
repairs are made. Clearly, this is not an option and thus to prevent this regular
maintenance is carried out. But to maintain a machine means shutting it down and
even for short periods this becomes an expensive business. There is therefore a
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FIGURE 2.10. A vibration spectra.

desire is to maintain the machine when it is required but not on a regular basis.
However, how do we know when maintenance is required? One option is to monitor
the condition of the machine. By fitting vibration detectors to the machine we can
collect vibration spectra (see Figure 2.10).

Collecting vibration patterns is the equivalent to listening to a car however most
machines, just like cars, make a range or normal noises. How do we therefore
identify when a machine is developing a fault that requires maintenance?

Neural networks have in recent years been applied quite successfully to a range
condition monitoring tasks. Neural networks are adept at taking in sensory data,
e.g. vibration spectra and identifying patterns. In this case the network can learn
which spectra represent normal operation and which indicates a fault requiring
attention.

While NNs may appear to be the obvious solution to this task there are other options
that could be considered. Interface Condition Monitoring Ltd. (UK) is a company
that specialises in undertaking this sort of analysis. With years of experience in this
field they decided to try and capture some of their knowledge in order to benefit
trainee engineers. Working with the University of Sunderland (UK) they decided
to capture this knowledge in an expert system. While the development of an ex-
pert system was possible there were some programming hurdles that needed to be
overcome. Expert systems, unlike NNs, are not adept at processing sensory infor-
mation. Thus before the expert system could make decisions the spectra needed
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to be pre-processed to identify relevant peaks in the spectra. This information was
then presented to the expert system in a form it could understand.

This situation highlights one important issue when choosing which AI technology
to apply to a given problem. Usually there is more than one way of solving a prob-
lem. While choosing the ‘best’ technology may offer advantages, and make the task
easier, business considerations may require the use of an alternative technology.

Further information on condition monitoring can be found at the following web-
sites:

http://www.maintenanceworld.com/preventive-maintenance.html
http://www.pemms.co.uk/Condition Monitoring.html
http://www.plant-maintenance.com/articles/ConMon21stCentury.shtml
http://www.engineeringtalk.com/guides/condition-monitoring.html.

Current Research in NNs

The following web addresses contain information on research in NNs:

IEEE Computational Intelligence Society at:
http://ieee-cis.org/
Neural Networks Group—University of Edinburgh at: http://www.see.ed.ac.uk/

research/IMNS/neural/
Advanced Computer Architecture Group: Neural Networks at the University of

York at: http://www.cs.york.ac.uk/arch/NeuralNetworks/
Papers on Neural Networks can be found via Citeseer at: http://citeseer.ist.psu.edu/

Summary

This section has introduced NNs and explained their use within knowledge-based
systems.

Self-Assessment Question

Question 1

Fill in the gaps in the following using either ‘neural networks’ or ‘expert systems’
require humans to update their database of information.
use rules in which to make their decisions.
adjust to inputs and outputs.
continue to expand their own base of information.
emulate human decision making.
learn human thought processes and reasoning patterns.
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Question 2

Imagine a NN trained to recognise flowers using 75 sets of data. Another 75 sets
of data are used to validate the trained NN. As NNs are trained on a data set the
implication is that the bigger the data set the better the training could be. It would
therefore be possible for the example problem above to use all 150 data items for
training. This would leave none for the validation set. However, the NN could be
better trained as it would have more data to learn from. Would this be a good idea?

Answer To Self-Assessment Question

Answer 1

Expert systems require humans to update their database of information.
Expert systems use rules and frames in which to make their decisions.
Neural networks adjust to inputs and outputs.
Neural networks continue to expand their own base of information.
Expert systems emulate human decision making.
Neural networks learn human thought processes and reasoning patterns.

Answer 2

It would not be a good idea to use all of the data for training. Take a simple analogy:
imagine a teacher who tells a small child that ‘2 + 2 = 4 and 4 + 4 = 8’. If the
child correctly answers the question ‘What does 2 + 2 equal?’ it does not prove
that the child has learnt how to add two numbers—they may just be able to recall
what the teacher told them. To check if they know how to add we need to give them
new, previously unseen problems, such as 3 + 5. In a similar way a NN may learn
to remember the inputs it was trained on and the associated outputs. However,
we want it to learn how these are connected so that it can solve any problem, i.e.,
generalise. To test that the NN has learnt to generalise correctly we need to validate
the NN using data that was not used in the training process.
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SECTION 3: CASE-BASED REASONING

Introduction

This section shows how one form of human reasoning can be used within
knowledge-based systems.

Objectives

By the end of the section you will be able to:
� explain the use of CBR in the development of knowledge-based systems
� evaluate the usefulness of CBR systems.

What Is a Case?

A case has two parts:
� Description of a problem or a set of problems
� Description of the solution of this problem.

Possible additional components might be explanations, and comments on the qual-
ity of the solution, etc.

Cases represent experiences, i.e., they record how a problem was solved in the
past.

What Are CBR Systems?

In CBR, information is stored in a KB in the form of cases, rather than rules. When
a new situation is encountered, the CBR system reviews the cases to try to find a
match for this particular situation. If a match is found, then that case can be used
to solve the new problem (see Figure 2.11).

Case-based reasoning works in a similar way to which humans select a course of
action from experience.
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FIGURE 2.11. Case-based reasoning process.

Typical Problems Handled with CBR

Problems handled by the use of CBR tend to be those with a classification and
diagnosis feature:

Observations diagnosis repair

classification Domain rules

Activity 14
What other examples of classification and diagnosis situations can you think
of that would benefit from using a CBR approach to problem solving?

Feedback 14
Situations where CBR can be used include:
� help desks (storage of similar requests from users)
� application of the law (past legal cases setting precedents)
� some diagnosis of illness (e.g. cardiac care) where cause and effect are fairly

well established.

For example, a computer technician may encounter a problem with a document
failing to print. They may recall a similar situation a few weeks ago, and remember
that the cause was a paper jam in the printer. This example will be used to guide
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them to open the printer and check for blockages before any other diagnostic
checks are run.

In CBR terms, this might be described as follows:

Technical Diagnosis of Computer Faults
� Symptoms are observed (e.g. document fails to print) and values are measured

(e.g. level of fluid or toner—half full).
� Goal: Find the cause for the failure (e.g. paper jam) and a repair strategy (e.g.

open printer and remove blockage).

Case-Based Diagnosis

A case describes a diagnostic situation and contains:

� description of the symptoms
� description of the failure and the cause
� description of a repair strategy.

To perform a diagnosis the following steps must be performed:

� store a collection of cases in a case base
� find case similar to current problem and reuse repair strategy.

Steps in CBR

A CBR program will normally work through the following steps:

� Collect the important features that define each new case presented to the system.
� Retrieve past cases matching these features most closely.
� Select the cases most relevant to the current problem.
� Where necessary, adapt the stored cases to solve the current problem.
� Validate the new solution and store as a new case.
� Where a case match is not found, then find an alternative solution and record

both problem and solution.

Where more that one case match is found, the CBR system will need to:
� resolve any ambiguities if multiple solutions are found
� recognise that multiple solutions may sometimes be acceptable.

The CBR system is effectively following important processes or rules to:
� Retrieve the most relevant cases for comparison with the current problem.
� Reuse knowledge from those cases which help in solving the current problem.
� Revise the proposed solution, using the case information.
� Retain details of the current (now hopefully solved) problem as a new case for

future reference.

Cases do not need to be understood by the knowledge engineer in order to be
stored.
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Activity 15
Bearing in mind the steps involved in CBR, draw a diagram to show the CBR
process.

Feedback 24
One possible solution is shown in the diagram below.

New Case

Retrive exisiting
case details

Database
of cases

Solve the new
problem

Test the solution

Write new case
back to the data

base

CBR Examples

In the following example, we will look at how a case base containing only two
cases deals with a problem with a printer.

The storage of the cases in the case base might be represented by Figure 2.12.
Notice that the solution records not only the diagnosis of the cause of the problem
but also the action taken.

Feature Value

Problem (Symptoms)
• Problem: Document won’t print
• Printer type: Laser
• Ink or toner empty: No
• Paper empty: No
• State of lights: On
• Printer ready: Yes

Solution
• Diagnosis: Paper Jam
• Repair: Open printer and remove blockage

C
A
S
E

1

FIGURE 2.12. Case 1.
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Figure 2.13 shows the two cases in the case base together for comparison. Each
case describes one particular situation and all cases are independent of each other.

Problem (Symptoms)
• Problem: Document won’t print
• Printer type: Laser
• Ink or toner empty: No
• Paper empty: No
• State of lights: On
• Printer ready: Yes

Solution
• Diagnosis: Paper Jam
• Repair: Open printer and remove blockage

C
A
S
E

1

Problem (Symptoms)
• Problem: Document won’t print
• Printer type: Inkjet
• Ink or toner empty: No
• Paper empty: Yes
• State of lights: On
• Printer ready: Yes

Solution
• Diagnosis: No paper
• Repair: Add paper to printer

C
A
S
E

2

FIGURE 2.13. Cases 1 and 2.

When a new problem has to be solved, several observations of the current situation
are made. These observations define the new problem. Not all feature values need
to be known.

Note that the new problem is a ‘case’ without solution component (Figure 2.14).

Problem (Symptoms):

Problem: Document won,t print

Printer type: Inkjet

Ink or toner empty: No

Paper empty: No

Printer ready : Yes

FIGURE 2.14. A problem to be solved.

The new problem is compared with each case in the case base and the most similar
case is selected (Figure 2.15).
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FIGURE 2.15. Problem comparison.

When Are Two Cases Similar?

Cases are ranked according to their ‘similarity’ and therefore similarity is the most
important concept in CBR. We can assess similarity based on the similarity of each
feature and similarity of each feature depends on the feature value.

Similarity Computation

The degree of similarity can be expressed by a real number between 0 (not similar)
and 1 (identical). These can be assigned to particular features based on experience.

� Feature: Problem

Printer type: Inkjet Printer type: Laser

Printer ready: Yes Printer ready: No

0.5

0.0

However, the importance of different features may be different and there is there-
fore the need to apply weights to features.

High importance: Problem, Paper empty, Printer ready, . . .
Low importance: Printer type, . . .

Similarity Computation by Weighted Average

Between Problem and Case 1

(see Figure 2.16)
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Problem (Symptoms)
• Problem: Document won’t print
• Printer type: Laser
• Ink or toner empty: No
• Paper empty: No
• State of lights: On
• Printer ready: Yes

Solution
• Diagnosis: Paper Jam
•

C
A
S
E

1

Repair: Open printer and remove blockage

Problem (Symptoms):

Problem: Document won’t print

Printer type: Inkjet

Ink or toner empty: No

Paper empty: No

Printer ready : Yes

Very important feature: weight = 6

Less important feature: weight = 1

1.0

1.0

0.5

1.0

1.0

FIGURE 2.16. Similarity computation.

Similarity(new, case 1) = 1/25∗[6∗1.0 + 1∗0.5 + 6∗1.0 + 6∗1.0 + 6∗1.0]

= 0.98

Note that the 1/25 component is arrived at from

1/total feature weights, i.e., 1/(6 + 1 + 6 + 6 + 6).

Activity 16
1. Sketch a diagram relating the problem to Case 2.
2. Conduct a similarity computation for Case 2.
3. Determine which of the cases is more similar to the problem.

Feedback 16
Your diagram should look a little like this:

Problem (Symptoms):

Problem: Document won’t print

Printer type: Inkjet

Ink or toner empty: No

Paper empty: No

Printer ready : Yes

Problem (Symptoms)
• Problem: Document won’t print
• Printer type: Inkjet
• Ink or toner empty: No
• Paper empty: Yes
• State of lights: On
• Printer ready: Yes

Solution
• Diagnosis: No paper
• Repair: Add paper to printer

C
A
S
E

2

1.0

1.0

1.0

1.0

0.0

Your calculation should be:

Similarity(new, case 2) = 1/25∗[6∗1.0 + 1∗1.0 + 6∗1.0 + 6∗0.0 + 6∗1.0]

= 0.76

Case 1 is therefore more similar—thus the diagnosis ‘Paper jam’ would be
made.
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If the diagnosis is incorrect then a technician must carefully work out what is
wrong with the printer. Having done this the new case (problem plus diagnosis and
solution) can be stored in the case base and our case base thus contains another
example of problem and solution. Over time, as the case base grows, the CBR
system will be able to resolve more and more problems.

An example of a CBR system in operation on the Internet is the 3Com Knowledge
Base at: http://knowledgebase.3com.com

Advantages of Using CBR

There are a number of advantages of using CBR:
� Reduction in the amount of knowledge acquisition actually needed, because the

CBR system searches current cases for solutions rather than inferring solutions
from a rule base.

� The CBR system learns over time by adding new cases to the KB. This avoids
the need to add new rules or modify existing rules in the KB.

Disadvantages of Using CBR

The main disadvantages of using CBR are as follows:
� Storing of cases in the KB. Care is needed to ensure that cases are referenced

correctly with appropriate attributes.
� Ensuring that there is an efficient method for accessing cases, as well as identi-

fying their important attributes for any search.
� Not providing good presentation of information to the user.

When Should CBR Be Used?

Case-based reasoning is generally used in situations such as where:
� Problems cannot be easily decomposed. This means it is very difficult to find the

rules governing the system, so rule-based reasoning (RBR), as used in a typical
expert system, is less effective, or in fact will not work.

� The general principles involved are not completely understood, but where a
library of past experience can be generated. In this situation it is, again, difficult
to produce a full set of rules for the knowledge domain. The main reason for the
lack of rules may be that the domain is very complex or that contradictory rules
apply in different situations.

Differences Between RBR and CBR

There are some important differences between RBR and CBR. In many situations,
the two systems provide a direct contrast in approach and use of the KB and the
real world.



Types of Knowledge-Based Systems 63

Activity 17
The table below shows some characteristics of both RBR and CBR. The
details about RBR have been entered into the table. Complete the table for
CBR, remembering that CBR examples are likely to be the opposite of RBR.

Factor Rule-based reasoning Case-based reasoning

Knowledge content –
can the knowledge
be expressed in small
explicit chunks?

Rules are small,
independent, explicit
pieces of knowledge.

Domain—is the
knowledge domain
easy to understand
and record?

Yes, rules or heuristics are
known and can be written
down.

Does the knowledge
exactly match the
situation?

In order to fire all rule
conditions must exactly
match the facts.

Feedback 17
Information on CBR is given in the third column.

Factor Rule-based reasoning Case-based reasoning

Knowledge
content—can the
knowledge be
expressed in small
explicit chunks?

Rules are small,
independent, explicit
pieces of knowledge.

Cases represent large
chunks of knowledge.
The link between
problem and solution is
implicit.

Domain—is the
knowledge domain
easy to understand
and record?

Yes, rules or heuristics
are known and can be
written down.

The domain may not be
fully understood but it
is still possible to
identify solutions to
problems.

Does the knowledge
exactly match the
situation?

In order to fire all rule
conditions must exactly
match the facts.

Cases maybe applied
even if they only
partially match the
problem.
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Current Research in CBR

The following web addresses contain information on research in CBR:

Artificial Intelligence Applications Institute: University of Edinburgh (makers
of the AIAI CBR tool) at: http://www.aiai.ed.ac.uk/technology/casebased-
reasoning.html

Norwegian University of Science and Technology: Al and Learning Group at:
http://www.idi.ntnu.no/grupper/ai/cbr/

Papers on CBR can be found via Citeseer at: http://citeseer.ist.psu.edu/

Summary

In this section you have been introduced to CBR and learned that information in
CBR systems is stored in a KB in the form of cases, rather than rules.

You also learned that the use of CBR systems is appropriate where problems cannot
be easily decomposed or where the general principles involved are not completely
understood, but where a library of past experience can be generated.

Self-Assessment Questions

Question 1

Describe how CBR can be used in searching the Internet for information.

Question 2

The CBR system shown earlier is used to diagnose printer faults. Imagine a new
fault occurs which the CBR system incorrectly diagnoses. Explain what happens
next.

Later the fault is correctly diagnoses as ‘No power’ and a solution is provided
‘Check electrical supply’. One of the printers symptoms was ‘Status lights: Off’.
Making up the other symptoms and using the format you saw earlier in the chapter
construct a diagram to represent the newly solved problem.

Answers to Self-Assessment Questions

Answer 1

Go to the AskJeeves website and ask the search engine a question. Rather than pro-
vide a list of sites straight away that may answer your question, Jeeves sometimes
asks additional questions to clarify your initial question.
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This website is using two systems to try and determine the answer you need:

� Case-based reasoning—by maintaining a list of frequently asked questions, it
may be able to direct you to the appropriate website more quickly by checking
this list and the results prepared earlier.

� Firing different search rules to determine the important words within your search
criteria. For example, a search for motor vehicles in the twentieth century running
on motorways provides all sorts of references from buying cars to computer
programming. You need to tell Jeeves exactly which area you are interested in
to provide better matches.

Answer 2

After an incorrect diagnosis a technician is asked to investigate and solve the
problem. When they have done this the new problem and solution, once it is
confirmed, is documented as a new case and added to the case base.

Case 3 should look something like this.

Problem (Symptoms)
• Problem: Printer does not do anything
• Printer type: Inkjet
• Ink or toner empty: No
• Paper empty: No
• State of lights: Off
• Printer ready: Unknown

Solution
• Diagnosis: No power
• Repair: Check electrical supply

C
A
S
E

3



66 An Introduction to Knowledge Engineering

SECTION 4: GENETIC ALGORITHMS

Introduction

This section provides an introduction to genetic algorithms.

Objectives

By the end of the section you will be able to:

� understand how the process of evolution applies to genetic algorithms
� evaluate the value of genetic algorithms in specific problem-solving contexts.

What Are Genetic Algorithms?

An algorithm is a sequence of instructions to solve a problem. Although other
knowledge-based systems (such as ANNs) are based on algorithms, many of those
algorithms tend to be static, that is they do not change over time. While this provides
some certainty in how the system will operate, it does mean that such systems may
be limited when trying to determine the solution to a problem.

A genetic algorithm is a model of machine learning that derives its behaviour
from a metaphor of some of the mechanisms of evolution in nature. This is done
by the creation within a machine of a population of individuals represented by
chromosomes, in essence a set of character strings that are analogous to the base-4
chromosomes in our own DNA. The individuals in the population then go through
a process of simulated ‘evolution’.

Activity 18
This activity will give you a brief video introduction to genetic algorithms.

Watch the Robot Independence video at: http://www.pbs.org/saf/1303/
video/watchonline.html.

You will need to specify the type of media your system can play (either Real
Media or Windows Media—the latter is probably your best bet) and your con-
nection speed, 56K (dial-up connection) or 220K (high speed connection, e.g.
T-1 or DSL).
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Activity 19
This activity will give you the opportunity to visualise genetic algorithms.

Visit the site http://www.rennard.org/alife/english/gavintrgb.html.

Follow the link to the Genetic Algorithm Viewer.

Detailed instructions and explanations are available on the site.

Note that the Java applet and source code can be downloaded from the front
page.

When a genetic algorithm is implemented it is usually done in a manner that
involves the following components:
� a genetic representation for potential solutions to the problem
� a way to create an initial population of potential solutions
� an evaluation function that plays the role of the environment, rating solutions in

terms of their ‘fitness’
� genetic operators that alter the composition of children
� values for various parameters that the genetic algorithm uses.

The actual process is cyclical and repeats until an optimum solution is obtained:

1. Evaluate the fitness of all of the individuals in the population.
2. Create a new population by performing operations such as crossover, fitness-

proportionate reproduction and mutation on the individuals whose fitness has
just been measured.

3. Discard the old population and iterate using the new population.

One iteration of this loop is referred to as a generation. The first generation (genera-
tion 0) of this process operates on a population of randomly generated individuals.
From there on, the genetic operations, in concert with the fitness measure, operate
to improve the population.

Example of Genetic Algorithms

Let’s say we have a pool of random letters and ‘space’ characters, strung into
series of length 37. We are attempting to assemble the following sentence out of
this primordial soup of letters and spaces:

jackdaws love my big sphinx of quartz

All we know about this sentence is that it is 37 characters in length, is composed
up of the letters a–z and spaces, and that we have a function called fitness(string),
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which accepts our test strings and returns a fitness value, i.e., tells us how many
of the characters are correct.

First we make a set of 37 character random strings of letters. For this example,
we’ll just use a set of four strings. In practice, hundreds or thousands would be
applied to the task.

Here are the four random strings, matched up against the actual sequence, as well
as their fitness values:

1 jzag uwnapd exmavni asrqmnalo evxarmp
| | | | | | | | ||

fitness = 10
jackdaws love my big sphinx of quartz

2 hgfboaiey afdoanvsdgr ayrebnonas od a
| | | fitness = 3

jackdaws love my big sphinx of quartz

3 nawegres fiop cdebdebg hsdon filop uz
| || | | | | | fitness = 8

jackdaws love my big sphinx of quartz

4 sde rthui opnm xf zaqsl tehe nsqju io
| | | fitness = 3

jackdaws love my big sphinx of quartz

When each member of the population is evaluated we can see that strings 1 and 3
have the best fitness score. Strings 2 and 4 can therefore be discarded.

Incidentally, the average fitness for this first population is (10 + 3 + 8 + 3)/
4 = 6

We then crossover portions of the genetic material from each of the remaining
members of the population to generate the next generation. We can generate a new
string combining 1 and 3 by taking the first letter from String 1 followed by three
letters from String 3 then another from 1 and three from 3 and so on.

Repeating the process but this time taking the first letter from String 3 and the next
three letters from String 1 will give us two new strings.

jawe resa fi p cmdebs hsnon o fila mp

nzagguwn apdoexmdvni asromnaio e xar-

(The ‘ ’ character is used here to indicate the presence of a space at the end of the
string.)



Types of Knowledge-Based Systems 69

Another way of combining the genes would be to take the first half (approximately
since there are only 37 characters in the string) of 1 and combine it with the second
half of 3 then vice versa for the second string.

jzag uwnapd exmavniebg hsdon filop uz

nawegres fiop cdebd asrqmnalo evxarmp

After crossing over the genes in this way, we apply, consistent with the analogy of
genetics, a small element of mutation. In this case the 11th character of the second
new string has been changed to a space and the 3rd character of the fourth has
been changed to a ‘c’.

We now have a new population of four strings and can evaluate them against our
goal string.

jawe resa fi p cmdebs hsnon o fila mp
5 || | || | fitness = 6
jackdaws love my big sphinx of quartz

nzagguwn a doexmdvni asromnaio e xar-
6 | | | | fitness = 4
jackdaws love my big sphinx of quartz

jzag uwnapd exmavniebg hsdon filop uz
7 | | | | | | | fitness = 8
jackdaws love my big sphinx of quartz

nacegres fiop cdebd asrqmnalo evxarmp
8 || || | | | | | || fitness = 11
jackdaws love my big sphinx of quartz

The average fitness score for our new population of strings has increased to

(6 + 4 + 8 + 11)/4 = 7.25

This process of selection, crossover and mutation continues until a reasonable
solution to our problem has been found.

Though there may be many better ways of solving the small-scale problem of the
example, for extremely complex situations where the string is merely a model or
representation of something else—such as a series of possible components in a
very complex organic molecule—the application of genetic algorithms becomes a
very efficient solution strategy.

It must also be emphasised that many of the applications of genetic algorithms
are to problems where it is sufficient to reach an adequate solution. For example,
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generating one possible examination timetable would be a typical application of
genetic algorithms. If you imagine several thousand students all sitting examina-
tions over a 2-week period there would be many billions of possible examination
timetables. However, the vast majority of these would involve one or more clashes,
where a student would need to take two or more examinations at the same time.
Clearly this is impossible. The goal would be too find an examination timetable
with no clashes. Further no student would like to sit five examinations in 5 days
(nor two in the same day) therefore an ideal timetable would be one where all
examinations are evenly spread out. Given the immense difficulty in finding this
one ideal timetable (assuming it exits), from among the many billions of possible
timetables, we may be willing to accept any of the very good timetable solutions
available, i.e., any timetable where there are no clashes and no student has two
examinations in 1 day (though they may have three or four in 1 week). This is
where genetic algorithms excel. They are very good at finding one of the many
hundred of good solutions to such a problem.

Complex problems can be solved using other techniques, but it is in the rapid
development of set of good solutions where genetic algorithms are particularly
useful.

Other Examples of Genetic Algorithms

You will find examples of actual genetic algorithms on the Internet at:

http://ai.bpa.arizona.edu/∼mramsey/ga.html
http://ai.bpa.arizona.edu/∼tong/gaoi/

You will even find a genetic algorithm applied to playing jazz solos at:

http://www.it.rit.edu/∼jab/GenJam.html

The genetic algorithm playground (a general purpose genetic algorithm toolkit
where you can define and run your own optimisation problems) is available for
download at:

http://www.aridolan.com/ofiles/ga/gaa/gaa.aspx#Download

Instructions are included.

Processes Within Genetic Algorithms

As already noted, genetic algorithms try to mimic evolution. To do this, they use
three basic processes.

Reproduction

Production of new generations of code using parents with higher fitness ratings,
that is having a higher probability of finding the answer to problems.
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Crossover

Changing the code within two strings at a random place and creating two new
strings of code by merging the ‘split’ strings. This process is used in nature where
genes from parents combine to form a whole new chromosome.

Mutation

Changing one digit in the code on a random basis. For example, changing a 1 to a 0
without the processes of reproduction or crossover. This mimics random changes in
genetic code and is especially useful where crossover does not provide an answer.

Use of Genetic Algorithms

Genetic algorithms are used to solve many large problems including:
� scheduling
� transportation
� layout and circuit design.

Two very detailed applications of genetic algorithms are available at:

A Genetic Algorithm Based University Timetabling System
http://www.asap.cs.nott.ac.uk/publications/pdf/crimea94.pdf
General Aviation Aircraft (GAA): Analysis of a Product Family Platform

using Genetic Algorithm
http://www.personal.psu.edu/users/m/v/mvd119/doc/gapaper 1 .doc

Current Research in Genetic Algorithms

The following web addresses contain information on research in genetic algorithms
at:

AIAI, the Artificial Intelligence Applications Institute at the University of
Edinburgh
http://www.aaai.org/AITopics/html/genalg.html

Indian Institute of Technology Kanpur Genetic Algorithms Laboratory
http://www.iitk.ac.in/kangal/

Heuristics and Artificial Intelligence in Finance and Investment
http://www.geocities.com/francorbusetti/

Papers on Genetic Algorithms can be found via Citeseer
http://citeseer.ist.psu.edu/

Summary

This section has provided an introduction to genetic algorithms and shown how
the process of applying them mimics the biological evolutionary process.
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Self-Assessment Question

Question 1

Visit the website http://www.sambee.co.th/MazeSolver/mazega.html.

Write a brief explanation of how the system is working.

Question 2

Given the following problems to solve which of the following technologies would
you use:
� an expert system
� a neural network
� a case-based reasoning system
� a genetic algorithm.

Problem 1

A brewery want a machine to smell beer to detect if any has gone off before it
is canned. To help with this a robotic nose has been developed to smell the beer
but which technology should they use for the decision-making component of the
system?

Problem 2

A bank wants a system to decide if a loan applicant is likely to default on their loan
payments, i.e., fail to pay back the loan. Which technology could be used for this?

Answer to Self-Assessment Question

Answer 1

You will notice that the solver is using the basic tools of genetic algorithms men-
tioned above. You should also see that the system gets better at solving the maze
as more attempts are made. This happens because the better maze-solving routines
are retained and the less effective ones eliminated from the system. Eventually,
the algorithm is good enough to reach the end of the maze, although this can take
a significant number of generations before this happens.

Answer 2

Problem 1

The obvious answer for this problem is a NN. Expert systems work from symbolic
reasoning they are not good at dealing with sensory information. A NN, on the
other hand, is very good at dealing with sensory data. A range of beers that smell



Types of Knowledge-Based Systems 73

bad would be required to train the network—or failing this a network could be
trained on a range of normal smells and this could be used to detect unusual smells
(though not necessarily bad beer).

If a program could be written to decode the sensory information, perhaps by turning
it into a graph, a CBR system could also be developed. Such a system may start
off empty, i.e., with no cases. However, as each batch of bad beer is detected by
human staff this could be entered as a new case. The CBR system would then be
able to identify any similar smells in the future.

Problem 2

If a human expert exists with sufficient knowledge to determine applicants who
are likely to default on their loans then this expert’s knowledge could be captured
and turned into an expert system. Alternatively, a NN could be trained on past
data (assuming bank records have been kept) to recognise the applicants who are
unlikely to payback the loan.
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SECTION 5: INTELLIGENT AGENTS

Introduction

This section provides you with an introduction to intelligent agents and their use
within knowledge engineering.

Objectives

By the end of this section you will be able to:

� explain the characteristics of intelligent agents
� describe the architecture of intelligent agents
� understand some roles that intelligent agent can fulfil
� understand breath, depth and heuristic search strategies for planning tasks.

What Are Intelligent Agents?

Intelligent agents are entities, such as robots or computer programs that perform
some useful functionality on your behalf and exhibit some fairly unique charac-
teristics. To be classed as an intelligent agent the entity must be able to:

� perceive their environment in some way
� understand their purpose or goal
� interact with their environment
� react to changes in the environment
� exhibit aspects of intelligence, i.e., the ability to make decisions for themselves

and potentially to learn as their experience grows
� make autonomous decisions, i.e., knowing their goal, be able to decide for them-

selves what actions they should perform next.

In some cases, e.g. when robots must move from one location to another, deciding
on the next appropriate action to take will require planning (as discussed later in
this section).

Some agents act as information gatherers and report the results of their search
other agents perform actions that make direct changes to the world, e.g. a robot
will move an object.

Figure 2.17 illustrates the general architecture of an intelligent agent.
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FIGURE 2.17. The general architecture of an intelligent agent.

Activity 20
Consider the task of designing a robot to perform general activities around the
house such as cleaning, washing and ironing, etc. What advantages would there
be in developing the robot as an intelligent agent?

Feedback 20
An ordinary robot would only perform actions when specifically instructed to
and would therefore need constant supervision. However, by designing the robot
as an intelligent agent it would decide for itself which action to perform next,
e.g. when power was low it could decide for itself that recharging its batteries
was more important than cleaning the house. Of course it may make some
decisions of which you would not approve, such as cutting the grass at night,
but you would then expect it to learn and modify its behaviour accordingly.
Such a robot would also be able to respond to changes in its environment, such
as a fire breaking out, and respond accordingly without waiting for specific
instructions.

Consider an estate agent whom you have employed to find a house for you to buy.
You may expect them to:

� understand your basic requirements and to decide for themselves which proper-
ties meet these requirements and which do not

� investigate new properties that become available in the market to see if these
may meet your needs

� learn why you have rejected any properties they have shown you and update their
knowledge of your requirements accordingly thus refining their future selection
of houses
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All of these behaviours demonstrate ability as an intelligent autonomous human
and as such we take such behaviour for granted.

Activity 21
Consider the example above and imagine an intelligent software agent de-
signed to search the web for current news regarding developments in science
or technology. What behaviour would you expect of this agent to demonstrate?

Feedback 21
You may expect it to:

� identify news stories that are current and are on the subject of science or
technology (even if these exact words are not used in the story)

� automatically search new websites or postings as they become available
� learn from your reaction to the stories which interest you the most, e.g.

artificial intelligence\robotics, etc. and lookout for these in particular.

Multi-Agent systems

Activity 22
Consider separate agents that are developed to sell shares (at the maximum
price) and buy shares (at the minimum price) on the stock market. What prop-
erties may such agents need that are not discussed above?

Feedback 22
With just the abilities discussed above these agents would be able to interact
with their environment in order to buy and sell shares. However, it would be
useful if these agents could interact directly with one another. If they could
communicate directly then one agent would be able to buy the shares that the
other agent wished to sell and thus both agents would benefit.

In the example above it would be very easy to develop mechanisms to enable the
two agents to communicate directly. However, consider a more complex example.
Imagine a game where characters, intelligent agents, are given the task of surviv-
ing and interacting in a simulated world. One character is entering a dangerous
territory and meets another that is leaving. The character leaving that territory
has information that the other may be willing to buy. The agents therefore need
negotiation skills and complex communication skills.
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In the real world the potential exists for developing software systems made up
of intelligent agents cooperating to achieve a common goal and over the past
few years some research has been done in this area. One obvious application for
this technology would be the development of robotic soldiers where a sergeant
would organise and manage a squad of privates. While the sergeant would issue
instructions for the group, individual robots would still take autonomous decisions
appropriate to their role within the group. Working as a group will require a
common goal and the ability to interact and communicate.

Before cooperating multi-agent systems are developed, we should consider the
complexity and potential cost verses the benefit that such systems would provide.

Activity 23
Follow the link below to AgentLand, or search other websites, and identify
several agents that are available for download.

http://www.agentland.com/

Feedback 23
You may have found a range of agent software including:
� search agents
� web agents
� monitoring agents
� virtual assistants including virtual pets
� shop bots.

Searching and Planning

The topics of searching and planning have been important in the field of AI long
before the idea of intelligent agents was first suggested. Every AI technique can
be considered a method of searching for a solution and planning is important for
many systems such as design and route finding systems. We will discuss these
topics in the context of a robotic agent planning a path to a desired goal.

Consider the following map showing adjoining rooms.

A B C D E
F G H
I J

Assume that a robot wants to travel from room B to room D. Also, assume that
between each set of adjacent rooms is an unlocked door.
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Layers below remain un-drawn
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FIGURE 2.18. A search space.

Figure 2.18. shows every choice the robot could make assuming the robot does
not double back on themselves and does not visit a room more than once.

This tree, if completely drawn, shows every possible route the robot could take
starting from room B. We call this tree a search space. The robot’s problem is to
search this tree to find an efficient route to the desired room before taking its first
step, i.e., to plan the journey in advance.

In the real world this problem could be more complex for two specific reasons:

� On many occasions the robot would not have a map and would need to develop
one as they manually investigate their environment.

� The environment may not remain static and could change as the robot moves,
e.g. unlocked doors could be locked, etc.

We will limit our discussion to the simplified case where these issues are not a
problem.

There are three basic search strategies each with their own advantages and disad-
vantages . . .

� breadth first search
� depth first search
� heuristic, or knowledge-based search.

Breadth First Search

Using breadth first search the tree is considered one layer at a time as shown in
Figure 2.19.
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B

A F C

I G G D

FIGURE 2.19. Breadth first search.

Firstly, the first layer is drawn and examined. As the desired room ‘D’ is not in
the first layer, the next layer of the tree is drawn and searched. D is on this layer
thus we have found a route, as denoted by the links, from B to C to D. The main
advantage of breadth first search is that it will find the shortest route. However,
breadth first search requires the entire tree to be drawn one layer at a time until
the solution is found. While this is not difficult for the problem specified above,
as it is unrealistically simple, for most realistic problems the search tree would be
massive and the solution would not be found on the second layer thus keeping an
entire search space in the memory of a robot would be unrealistic.

Depth First Search

Using the depth first search strategy the tree is considered one branch at a time as
shown in Figure 2.20.

B

A F

I G

C

D
FIGURE 2.20. Depth first search.

Using depth first search the tree is explored one branch at a time. If a branch
is unfruitful the search backtracks to examine the next possible branch and the
previous branch is deleted. Thus in the example shown the nodes are examined in
the following order: B, A (backtrack to B), F, I (backtrack to F), G, C, D (solution).
The advantage of depth first search is that only one branch of the tree is examined
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at a time thus it requires far less memory than breadth first search. The obvious
disadvantage is that the solution found is probably not the best. In this case the
suggested route to room D is, B to F, F to G, G to C and C to D.

Heuristic Search

The final search strategy considered here is heuristic search. Heuristic search strate-
gies rely upon knowledge to prune the search tree so that only a small part of the
tree is considered. In most cases this makes sense and humans always use their
knowledge of ‘what makes sense’ to guide their decision-making process and
avoid wasting time with the multitude of options that are evidently poor choices.
For example, when playing chess, most of the possible moves would place your
pieces in danger—for no good reason. Even novice chess players learn quickly that
they must consider which move to make carefully. Heuristic searches rely upon
knowledge to guide the choices and are only as good as the knowledge that guides
the search.

For the example problem above, let us assume that the robot knows that the room
it is looking for is directly to the east of its current position (see Figure 2.21).

B

A F C

G D

FIGURE 2.21. Heuristic search.

Given this knowledge, the robot knows that rooms A and F are not in the correct
direction, thus these parts of the search tree are pruned and not drawn. Similarly,
room G is not in the correct direction and this section of the tree is deleted. The
remaining parts of the tree can be quickly searched to find the best solution (in the
case there is only one solution remaining). For large problems, heuristic searches
are the only realistic option; however, they do have one significant disadvantage.
Depth and breath first searches are both guaranteed to find a solution, assuming a
solution exists. However, using heuristic searches large parts of the search space
are pruned and not explored thus a solution could be missed if the heuristics are
poor.

Current Research in Intelligent Agents

The following web addresses contain information on research in intelligent
agents:
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FIPA The foundation for Physical Agents
http://www.fipa.org/

Intelligent software agent lab
http://www.cs.cmu.edu/∼softagents/

Socially Intelligent Agents
http://homepages.feis.herts.ac.uk/∼com0qkd/aaai-social.html

Artificial Intelligence Group at the Jet Propulsion Laboratory
http://www-aig.jpl.nasa.gov/

Artificial Intelligence Applications Institute
http://www.aiai.ed.ac.uk/

Papers on Intelligent Agents can be found via Citeseer
http://citeseer.ist.psu.edu/

Summary

In this section we have seen how intelligent agents differ from conventional soft-
ware, we have discussed the characteristics and architecture of these systems and
we have discussed the complexities of developing multi-agent systems. We have
also compared three common search strategies and considered the application of
these to agents that must plan their responses or actions.

Self-Assessment Question

Given the following map made up of towns (denoted by letters) and a road junction
(J1) draw a complete search space starting from town A (assume no location is
visited twice).

Identify the sequence of nodes visited when employing depth first and breadth first
search strategies to find a route from A to D.

B C

E

D

F

J1

A
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Answer to Self-Assessment Question

A

B J1 C

B D C J1

E E

F

BD

D B

F D

F

E J1  

C F

J1  E

D

E

B

C D

FE

F

Finding a route from A to D using breadth first search the nodes visited would be
A, B, J1, C, E, J1, B, D (the solution). Following the links would give us the route
found, i.e., A, J1, D.

Using depth first search the nodes visited would be A, B, E, D (solution found)
and the route would be A, B, E, D.
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SECTION 6: DATA MINING

Introduction

This section provides you with an introduction to the task of data mining and
explains how this is related to the subject of knowledge engineering.

Objectives

By the end of this section you will be able to:

� explain the goal of data mining
� describe some situations where data mining can be used
� understand the basics of how data mining works.

What Is Data Mining?

Data mining is essentially the automated extraction of hidden predictive informa-
tion from collections of data.

Such collections of data would normally be large but these days may not necessarily
reside in what would normally be considered to be databases. The data could, for
example, be the contents of web server logs that record all accesses to all files on
a company web server, though the earliest data mining relied on traditional (but
large) databases.

Introduction

Data mining tools use data to predict future trends and behaviours. Many compa-
nies already collect and refine massive quantities of data. Data mining techniques
can be implemented to increase the value of existing information assets. When
implemented on high performance client/server arrangements, data mining tools
can analyse massive databases to answer such questions as:

� Which of my customers are most likely to respond to a new promotional cam-
paign, and why?

� Which customers who bought product A are also likely to buy product B?
� Which of my current customers am I likely to loose in the next year and which

ones should I try hardest (and spend most money on in the form of offers and
discounts etc.) to keep?

You may have seen film Minority Report in which the main character, played by
Tom Cruise, walks through a shopping mall and is identified by the automated
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advertising devices and has specific products offered to him on the basis of his
expected preferences.

If you have ever visited Amazon.com and set up an account, you will have encoun-
tered the intelligent way in which their system anticipates the type of products you
might be interested in, either by recording what you have previously bought or even
just by what you have previously viewed. This is data mining at work. It is this intel-
ligence, this automated extraction of data without the need of human intervention,
that allows us to consider data mining ‘systems’ as ‘intelligent systems’.

Data mining is also sometimes referred to as Knowledge Discovery in databases
(KDD) because knowledge is discovered in data. For example, stored data might
indicate that I am between 50 and 55 years old, that I am married, own my own
house and have a small family car of a particular model and age. Knowledge
extracted from a database containing details of a range of products bought by
some people in these precise set of circumstances, allows statistical predictions
to be made about other products that might be desirable to other individuals in
that same set of circumstances. The larger the original database—both in terms of
how many people it contains and the range of information it contains about them,
enables the predictions to be more and more precise and accurate.

This accumulation of knowledge, extracted automatically from data, justifies con-
sidering such systems as pseudo knowledge-based systems.

The Development of Data Mining

Data mining techniques are the result of a long process of research and product de-
velopment. This evolution began when business data was first stored on computers,
continued with improvements in data access, and more recently, generated tech-
nologies that allow users to navigate through their data in real time. Data mining
takes this evolutionary process beyond retrospective data access and navigation to
prospective and proactive information delivery.

Data mining is supported by three technologies:

� massive data collection
� multiprocessor computers
� data mining algorithms.

The most commonly used data analysis techniques in data mining are:

� neural networks
� decision trees
� genetic algorithms
� rule induction (the extraction of useful if-then rules from data based on statistical

significance).
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How Data Mining Works

Data mining works by modelling data. Modelling is simply the act of building a
model in one situation where you know the answer and then applying it to another
situation that you don’t. Data mining software runs through the data and distils the
characteristics of the data that needs to be in the model. Once the model is built it
can then be used in similar situations to answer questions.

Mines of Data

Data that can be usefully mined need not necessarily be business data though
perhaps this where most attention has been applied.

Activity 24
Suggest other types of data that exists in large quantities that could perhaps be
mined to reveal useful knowledge.

Feedback 24
You might have been able to recognise that large quantities of data exist in the
following domains and that applying data mining may reveal useful knowledge:
� Scientific data
� Medical and personal data: From government census to personnel and cus-

tomer files
� Surveillance video and pictures
� Satellite sensing
� Digital media
� Text reports and memos
� The World Wide Web. Despite its unstructured and heterogeneous nature, the

Web is the largest data collection that has ever existed.

Knowledge Discovery

The kinds of patterns that can be discovered depend upon the data mining tasks
employed. Generally, there are two types of data mining tasks:

� descriptive tasks that describe the general properties of the existing data
� predictive tasks that attempt to make predictions based on inference.

Data mining functionalities and the variety of knowledge they discover include:

� Data characterisation summarises the general features of objects in a target class,
and produces characteristic rules. The data relevant to a user-specified class can
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be retrieved by a database query and passed to a summarisation module to extract
sets of characteristics of the data at different levels of abstraction.

� Data discrimination produces discriminant rules – the comparison of the general
features of objects between a target class and a contrasting class. For example,
it may be useful to compare the general characteristics of customers who rent
more than 30 DVDs per year with those whose rent less than five.

� Association analysis – extracts association rules focusing on the frequency of
items occurring together in transactional databases. Association analysis is com-
monly used for market basket analysis where it might be useful for example, to
know what DVDs are often rented together or if there is a relationship between
renting a certain genre of film on DVD and buying popcorn or chocolate.

� Classification analysis – organises data into given classes and uses given class
labels. Classification approaches normally use a training set where all objects are
already associated with known class labels. The classification algorithm learns
from the training set and builds a model that can be used to classify new objects.

� Prediction has successfully been applied to forecasting consumer behaviour
based on patterns discovered in past behaviour.

� Clustering – organises data into unknown classes. The clustering algorithm itself
discovers appropriate labels for the classes.

� Outlier analysis identifies data elements that cannot be grouped in a given class
or cluster. While in some domains they simply represent noise, in others they
can reveal important knowledge.

� Evolution analysis models evolutionary trends in time related data.
� Deviation analysis – analyses differences between measured values and expected

values and attempts to find the cause of the deviations (Zane, 1999).

Activity 25
Visit the Sevana IT Solutions and Services website at:
http://www.sevana.fi/context data analysis.php

There you will find a set of data entered and ready to be mined in the online
data mining feature. Submit the example data to the mining process by pressing
the Send button at the bottom of the page.

What type of output does this system generate?

Feedback 25
You will have discovered that the system outputs rules based on associations be-
tween simple items of data in the data set. For example, the following prediction
is made:
According to your data we would predict that if one subscribes to Information

then he would also like to subscribe to Mobile audio.
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The Value of Mined Knowledge

Data mining allows the discovery of potentially ‘useful’ knowledge. Whether
the knowledge is ‘useful’ or ‘interesting’ is subjective and depends on the user
and the context in which they are working at the time. The measurement of the
interestingness (a real technical term in this context) of the discovered knowledge
can be based on quantifiable objective criteria or it may simply be that it confirms
a hypothesis. Identifying and measuring the interestingness of patterns and rules
discovered is essential for the evaluation of the mined knowledge and the data
mining process as a whole. Finding ways to assess the interestingness of discovered
knowledge is still an active area of research.

The following are representative of current work:
Hilderman, R. J. and Hamilton, H. J. (2001) Knowledge Discovery and Measures

of Interest (The International Series in Engineering and Computer Science),
Kluwer Academic Publishers.

http://crpit.com/confpapers/CRPITV60Nguyen.pdf.
http://www.cs.kent.ac.uk/people/staff/aaf/pub papers.dir/PKDD-2005-

Carvalho.pdf.

Classifying Data Mining Systems

Data mining systems can be categorised according to:

� the type of data source mined—such as spatial data, multimedia data, time-series
data and text data, etc.

� the data model used—such as relational database, object-oriented database, data
warehouse, etc.

� the kind of knowledge discovered—such as characterisation, discrimination,
association, classification, clustering, etc.

� the mining techniques used—such as NNs, genetic algorithms, statistics, visu-
alisation, etc.

A comprehensive system would provide a variety of data mining techniques to fit
different situations.

Normally, it might be appropriate to distinguish between a data base, i.e., a store
of data, and a knowledge base, i.e., a store of knowledge, but if a database contains
knowledge in potentia can a database also a knowledge base?

Additional online data mining software demonstrations are available at:

Affymetrix Data Mining Tiool
http://www.affymetrix.com/support/technical/tutorial/dmt/start.html

Databeacon Open Client examples
http://www.affinite.co.uk/solutions databeacon open examples.html
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Current Research in Data Mining

The following web addresses contain information on research in data mining:
Microsoft Data Mining Research at:

http://research.microsoft.com/dmx/ DataMining/
Bell Labs NJ: Statistics and Data Mining Research at: http://stat.bell-labs.com/
IBM Knowledge Discovery & Data Mining at: http://domino.research.ibm.com/

comm/research.nsf/pages/r.kdd.html
Papers on Data Mining can be found via Citeseer at: http://citeseer.ist.psu.edu/

Summary

In this section we have seen how data mining techniques can be used to extract
previously unknown knowledge from large data sources and how this knowledge
can be used to gain a business advantage.

In this chapter we have now looked at a range of knowledge-based systems:

� expert systems
� neural networks
� case-based reasoning
� genetic algorithms
� intelligent agents
� data mining.

We have seen how these systems work and typical problems they are used to solve.

References

Zane, O. R. (1999). CMPUT690 Principles of Knowledge Discovery in Databases (http://
www.cs.ualberta.ca/∼zaiane/courses/cmput690/notes/Chapter1/ch1.pdf) accessed 12
March 2006.
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Knowledge Acquisition

Introduction

In this chapter we will be looking at knowledge acquisition, i.e., the process of
obtaining the knowledge to be stored in a knowledge-based system.

Objectives

By the end of the chapter you will be able to:

� define knowledge acquisition
� explain how knowledge is acquired from a human expert
� explain the purpose and types of interviews in obtaining knowledge
� explain why it is necessary to record the results of interviews using techniques

such as repertory grids.

What Is Knowledge Acquisition?

Knowledge acquisition (sometimes referred to as knowledge elicitation) is the
process of acquiring knowledge from a human expert, or a group of experts, and
using the knowledge to build knowledge-based systems.

An expert system must contain the knowledge of human experts; therefore the
knowledge acquisition process primarily involves a discussion between the knowl-
edge engineer and the human expert. Clearly, a knowledge acquisition session
should not be like a visit to the dentist. The knowledge engineer should aim to be
as friendly as possible.

In general, experts will be delighted to talk to anyone about their subject of interest,
and will exhaust any knowledge engineer. This however, does not mean that the
knowledge acquisition process is easy.

89
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Interviews

During your study you may have developed some familiarity with the use of
interviews in a systems development context.

These include:

� unstructured
� structured
� event recall
� thinking aloud.

A knowledge engineer can also use interviews as method of obtaining knowledge
from human experts however they must also consider other sources of knowledge.

Activity 1
You are a knowledge engineer about to start on obtaining information for a
new expert system. As part of this process, you are investigating the knowledge
domain and have meetings arranged with a human expert. Besides talking to an
expert, where else might a knowledge engineer look to find useful information?

Feedback 1
Sources of available knowledge include:
� procedure manuals
� records of past case studies
� standards documentation
� knowledge from other humans, less knowledgeable but more available then

experts.

Clearly, we need a range of knowledge acquisition methods, including computer
tools. We will also need to use a range of sources such as printed documentation
and manuals.

Other Sources of Knowledge

Questionnaires are also valuable in many situations. There is clearly a considerable
similarity between acquiring knowledge from experts in order to compile knowl-
edge bases, and acquiring information from system users in order to develop a new
or replacement information system.

Printed sources of knowledge can be very useful. In the specific context of knowl-
edge engineering and acquiring knowledge of a particular domain, manuals, case
studies and perhaps textbooks can also prove valuable.
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It is particularly important that the knowledge engineer uses these sources. As well
as detailed technical information, they can be used to familiarise the knowledge
engineer with the subject matter. Thus when the knowledge engineer conducts the
preliminary interviews with the expert, they are already familiar with the some of
the terminology and have a basic grasp of the subject area. This prevents wasting
of the expert’s time by asking them to explain trivial information.

While various types of documentation provide useful background to a specific
knowledge domain, there is no guarantee that the documentation is either complete
or up-to-date. Therefore one of the main methods of obtaining knowledge is still
to use human experts, as they are more likely to be aware of the current state of
knowledge in their particular domain.

The skills required of a knowledge engineer have already been discussed in
Chapter 1. Some specific skills will also be expected from the human experts
from whom knowledge will be elicited. Characteristics expected from an expert
include being:

� articulate
� motivated
� logical
� systematic.

Conducting Interviews

To conduct a successful interview the knowledge engineer will need to:

� plan
� use appropriate stage management techniques
� consider and use appropriate social skills
� maintain appropriate self-control during the interview.

Activity 2
Think about the planning required for an interview to obtain knowledge from
an expert. The activities that must take place are similar to organising any
meeting. So, consider what you must do to plan a meeting in an office about
any subject—or plan a meeting of a student society, for example, to discuss an
important issue.

Keeping this idea in mind, can you list the planning and stage management
activities that need to take place before an interview?
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Feedback 2
Planning
Ensure that the time and place of the interview are known.
Decide the purpose of the interview and based upon this what type of interview

technique would be most appropriate.
Book the appropriate room for the interview to take place in; ensure appropriate

refreshments are available.
Where appropriate plan the questions that need to be asked or collect appropriate

materials to trigger the expert’s memory.
Explain the nature and purpose of the interview with the expert. This will help

the expert prepare for the interview.
Ensure that the expert understands what factors will hinder progress of the

interview. In other words, check that the expert understands the outcome of
the interview.

Ensure that appropriate recording devices are available, e.g. tape recorders,
video and an assistant to take notes where necessary.

Stage management techniques
Consideration needs to be given to the location and the time of day of the inter-

view. Experts may work unusual hours so what may normally be considered
anti-social times may be appropriate for the interview.

Consider the room layout to minimise disturbance and maximise comfort.

Unlike a conversation the interview should not be assumed to be a natural form
of interaction. They are a crucial process to knowledge acquisition, and the time
should be used as effectively as possible. As noted above, the interview should be
approached in an organised and professional manner – even when the interview
itself is unstructured. Interviews have a particular advantage over other forms
of knowledge acquisition procedures. The knowledge engineer can satisfy both
themselves, and the expert, that they have grasped the points that the expert has
been making.

There are various tips that can help during the interview process:

Firstly, avoid ambiguity. Comparative words like bigger; better and lighter are not
always helpful, and certainly not precise. Bigger/better/lighter than what?

Secondly, bear in mind that the expert may miss out key parts of the reasoning
process. Where parts of the process are potentially complex the expert may
ignore some of these complexities in order to simplify the explanation so that the
knowledge engineer will understand them. Similarly, when solving problems
the expert may make what appear to be intuitive leaps. In reality these are
probably cause and effect relationships that the expert has noticed from years
of experience in the domain. However, because these steps are ‘intuitive’ rather
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than explicitly reasoned the expert may forget them during the interview process.
For both of these reasons we need to consider how to ensure that the knowledge
obtained is complete and accurate.

Questions useful to begin the interview process include:

� Can you give me an overview of the subject?
� Can you describe the last case you dealt with?
� What facts or hypotheses do you try to establish when thinking about a problem?
� What kinds of things do you like to know about when you begin to think about

a problem?
� Leading on to find a little more detail; tell me more about how this is achieved?
� What do you do next?
� How does that relate to . . . ?
� How, why, when, do you do that?
� Can you describe what you mean by that?

Closing an interview by reviewing the information obtained, and perhaps by alert-
ing the expert to the need for further interviews, is also important.

Activity 3
Suggest three questions or comments that would be appropriate in closing an
interview.

Feedback 3
The following are good closing questions and comments:
� Is there anything else we’ve missed?
� Let me summarise that, and correct me if I’m wrong.
� What do you think we should cover in the next session?
� Have we covered everything we should have?
� Thank you for your help.

The next activity will give you a chance to consider the merits (and otherwise) of
interviews as a method for knowledge acquisition.

Activity 4
Without making any comparison, evaluate the general advantages and disadvan-
tages of interviews as a method of knowledge acquisition.

Advantages Disadvantages
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Feedback 4

Advantages Disadvantages

• Provide first hand
information of the
knowledge domain
because the expert will
be familiar with this
domain.

• Time needed to transcribe and analyse the tapes.
Conducting a 1-hour interview may result in 10
hours of work. Firstly, a transcript of the
interview must be created (voice recognition
software may help with this) then the transcript
must be carefully analysed and relevant
knowledge extracted. The knowledge extracted
must be checked to ensure its accuracy and it
must then be analysed to identify any gaps or
areas of uncertainty. Subsequent knowledge
acquisition sessions must be planned to resolve
these issues.

• Knowledge engineer
can satisfy both parties
(engineer and expert)
that the relevant points
have been grasped.
Additional questions or
summaries can be
asked at any time in the
interview to check
understanding of the
points already covered.

• Possible discrepancies between the methods
described and the methods used. The expert may
not be able to explain some methods or processes
particularly well, or the knowledge engineer may
not fully understand the expert’s comments due
to lack of knowledge. This will lead to
inaccuracies in the engineer’s notes that will only
be identified when those notes are being
reviewed by the expert. Additional re-writing of
the notes will therefore be required.

• Different interview
types help to ensure
that the knowledge
domain is accurately
recorded by placing a
different emphasis on
the method of
collecting knowledge.

• Expert uses jargon that the knowledge engineer
does not understand – this will be less
problematic if the knowledge engineer does some
preparatory knowledge acquisition, from books
or other people, before talking to the expert.

• The expert may have difficulty recalling
information in an interview situation (although
thinking aloud interviews should alleviate some
of this problem).

• The expert may not trust the knowledge engineer,
or believe that the engineer has insufficient
interviewing skills or knowledge of the domain
to understand what the expert is explaining. This
will tend to make information obtained in the
interview incomplete as the expert becomes
bored or sees the interview as a waste of time.



Knowledge Acquisition 95

Having considered interviews in general we will now look at four very common
types of interview:

� Unstructured
� Structured
� Event recall
� Think aloud interviews.

Unstructured Interviews

The unstructured interview is often the first interview to be conducted. The purpose
of this interview is to enable the knowledge engineer to gain an understanding of
the knowledge domain. The knowledge engineer invites the expert to talk about
the knowledge domain in high-level terms. The expert is only interrupted to ask
general questions or to retain focus on the specific knowledge domain.

It will rarely provide a complete or well-organised description of the knowledge and
processes involved. However, it is fundamentally important to conduct unstructured
interviews.

The interview does allow the expert to bring areas of subject matter that had not
been considered to be important to the attention of the knowledge engineer. They
can often result in the experts straying into topics of interest that may not have
otherwise been discovered. However, unstructured interviews are time consuming
and should be used with caution.

To summarise, here is a list of the main characteristics of unstructured interviews:

� used in the early stages of knowledge acquisition
� consist of free flowing dialogue, mainly from the expert
� include spontaneous questions from the knowledge engineer
� little prior planning carried out regarding the content of the interview
� interviews tend to take on a ‘life of their own’
� rarely provide a complete or well-organised picture of the knowledge domain
� can introduce important topics that could otherwise be neglected in an interview

that was too structured.

Structured Interviews

The structured interview is the second main type of interview. It is used to obtain
in depth knowledge about the specific domain. The knowledge engineer will have
some appreciation of the knowledge domain from the orientation interview, so
this interview will focus on providing detail on the domain, involving many more
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Expert
Knowledge

engineer

Part1

Part2

Part3

Setting out
goals

Agree sequence of topics

Motivate
the expert

Discuss agreed topics

Review the interview

FIGURE 3.1. The sequence of structured interviews.

questions from the knowledge engineer. Some of the questions to the expert will
focus on why a certain actions are taken, to obtain an understanding how the expert
makes decisions.

Structured interviews are usually conducted after several unstructured in-
terviews have taken place, and the knowledge that they contain has been
analysed.

The interview normally consists of three parts (see Figure 3.1):

� Part 1 where an agreed sequence of topics is set out, and where the goals of
the interview are described by the knowledge engineer. This can motivate the
expert.

� Part 2 is where the discussion takes place, i.e., the questions are asked and the
expert has a chance to answer.

� Part 3 is a fundamental part of the quality assurance process, and is a review of the
interview, where the knowledge engineer can check that they have understood
and obtained correct answers.

Here are the characteristics of structured interviews:

� focused on the specific area of knowledge
� relaxed to enable the expert to answer questions clearly and at an appropriate

level of detail
� unhurried so as not to place the expert under time pressure
� interesting so both the knowledge engineer and expert can relate to the subject

and increase retention of information for the knowledge engineer.
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Event Recall Interviews

You may have previously encountered the fact gathering technique of observation.
You will not be too surprised to learn that though observing the knowledge pos-
sessed by experts is not as simple as observing users of an information system, the
knowledge engineer has something analogous available. This is the event recall
interview.

Activity 5
Working from the analogy with observation as a fact gathering technique sug-
gest what event recall might involve and what problems and advantages it might
have as a tool for gathering knowledge from experts.

Feedback 5
You should have been able to recognise that a technique named ‘event recall’
would involve the experts describing how they dealt with a particular event –
i.e., observing themselves in the past. Such recall should be in sufficient detail
to allow the knowledge engineer to interpret each stage in the solution of the
problem as applying a series of rules to particular aspects of the problem or
stages in its solution.

You may also have been able to recognise that such a technique requires sig-
nificant interpretative skills on the part of the knowledge engineer as well as
articulation (and an accurate memory) on the part of the expert. The latter
represents something of a disadvantage to the use of the technique.

Event recall interviews are very good at revealing the decision-making process
itself; i.e., the sequence of thought processes. They are also very good for checking
completeness of the knowledge acquisition sessions, though they have a tendency
to degenerate into a general discussion, and this must be avoided.

In an event recall interview, a particular case study will be discussed effectively.
The knowledge engineer may say to the doctor ‘in the case of Mr. Smith, for
example, talk me through the decision making process, “What questions did you
ask and in what order?”’

Often it is not enough to know what questions an expert will ask. We must also
learn the sequence in which those questions will be asked. Experts often develop
the habit of focusing on critical questions first, and leave others until later if at all.
The sequence of thought processes an expert goes through therefore, in making
a decision, is often as important as the particular pieces of knowledge that may
be applied to the problem at any particular point. Other knowledge acquisition
procedures may not highlight this sequence of thought processes.
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The event recall interview is often used when the validity of knowledge collected
through other methods is in question or when the complexities inherent in the
knowledge domain make it very difficult for the expert to articulate or even recog-
nise how they apply rules to the solution of a problem.

Thinking Aloud Interviews

Thinking aloud interviews are similar to event recall interviews in that they attempt
to capture the thinking behind a problem-solving process. In event recall, this
process is in the past; in thinking aloud, it is in the present. In other words, thinking
aloud interviews encourage the expert to explain how he or she is thinking through
a specific situation. The aims of the interview are to fill any gaps in knowledge
following the structured interview and to validate knowledge already obtained as
well as obtain information about the sequence of steps taken by an expert in solving
a problem. These interviews normally discuss actual cases, although for ethical
reasons these cases may be simulated rather than real.

A yet further variation of this type of approach is sometimes referred to as intro-
spective interviews. These involve asking the expert how they would solve a par-
ticular problem. The expert is encouraged to verbalise their thought processes. The
knowledge engineer only intervenes to ask probing questions, such as how or why.

However, it should be noted that the process of verbalising their thoughts may
distract the expert from solving the particular problem, and therefore can actually
interfere with the normal thinking process.

Activity 6
As a knowledge engineer, you will need to use various methods to obtain
knowledge from the human experts. Here are a number of situations where
information is obtained from individuals.

Read the following situations and name a technique that can be used to obtain
the information.
� A car manufacturer wishes to know what a few famous people think about

their cars.
� A software manufacturer needs to obtain information on whether some soft-

ware meets the detailed performance requirements expected of it.
� A novice chef wants to understand the process of planning a menu.
� Information on a certain soap powder is required from 5,000 different people

in one country.
� Detail is needed on the actual steps involved to make a joint between two

pieces of wood.
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Feedback 6
� A car manufacturer wishes

to know what a few famous
people think about their
cars.

Unstructured interviews are a good way of
finding unspecified information on a particular
topic. Structured questions, such as on a scale
of 1–10 rate our cars road handling, will
provide answers that are easier to analyse.
However, by structuring the questions the
interviewee will be unable to mention other
issues that are of particular concern to them,
e.g. the steering wheel is too small.

� A software manufacturer
needs to obtain information
on whether some software
meets the detailed
performance requirements
expected of it.

As specific information is required on detailed
performance requirements, specific questions
can be created to obtain exactly the information
required. Thus, structured interviews would be
a good method here.

� A novice chef wants to
understand the process of
planning a menu.

Event recall interviews are specifically designed
to obtain procedural information. Using this
method the process of developing a previous
menu, from start to finish, will be described.
Questions that may distract the expert should be
left until the entire process has been described.
A think aloud interview could also be used if
the expert had a current menu to plan.

� Information on a certain
soap powder is required
from 5,000 different people
in one country.

Questionnaires are an efficient way of
collecting information from a large number of
people. Questions can be open or closed.
Closed question with short yes/no style answers
can be very easy to analyse but will clearly
restrict the information obtained. Unlike an
interview additional questions cannot be asked,
it is therefore essential that the questionnaire is
well designed. To help with this a pilot
questionnaire with lots of open questions could
be tested on a sample group. These replies will
help in designing the final questionnaire.

� Detail is needed on the
actual steps involved to
make a joint between two
pieces of wood.

As procedural information is required, an event
recall interview could be used but perhaps a
better method would be ‘observation’. Using
observation the actual process can be seen. The
expert could verbalise the process they were
undertaking, i.e., this would then be a think
aloud interview. Subsequent questions can be
asked to clarify any areas of uncertainty.
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Other Knowledge Acquisition Techniques

Other knowledge acquisition techniques that can be used by the knowledge engi-
neer include:

� Tutorial interviews
� Twenty question interviews
� Trigger interviews
� Teach back interviews
� Repertory grids.

Tutorial Interviews

The expert is asked to prepare a presentation on a subject area to help the knowl-
edge engineer become familiar with the knowledge domain. Such interviews are
often used at the start of the knowledge acquisition process to give the knowledge
engineer a general overview of the subject.

Twenty Questions

An interview to gather important characteristics of a part of a domain. The person
being interviewed can only answer ‘yes’ or ‘no’ to questions. Either the knowledge
engineer asks questions to obtain basic concepts of the domain, or the expert asks
questions to check the engineer’s understanding.

A variation is where the knowledge engineer is supplied with a set of previously
solved problems in the domain, and the expert poses the questions for the knowl-
edge engineer.

Trigger Interviews

In these interviews, the knowledge engineer issues materials within the interview
that are intended to trigger and stimulate the experts’ responses, and to trigger
particular memories. Triggers can include structured diagrams derived from earlier
knowledge acquisition sessions, and this can be useful in presenting these to experts
to check the quality of the knowledge they represent. Triggers can also include
archive data from past instances of problem-solving activity.

Teach Back Interviews

These involve the knowledge engineer teaching back to the expert what they think
they have learned from other knowledge acquisition processes. Such an approach
highlights gaps or inaccuracies in the understanding of the knowledge engineer so
these can be corrected.
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Repertory Grids

The use of repertory grids is an additional knowledge acquisition technique that
requires separate treatment. They were introduced as a method of recording an
expert’s view of a particular problem. The elements of the problem are recorded
across the top of the grid; these are a list of people, objects or situations familiar
to the expert. The rows in the grid contain the constructs relevant to the elements,
which are obtained during the elicitation process. A construct represents a bipolar
characteristic that each element in the grid has. For example, a person has a specific
weight and eye colour. The aim of producing the grid is to show in what ways ob-
jects in the domain are alike (or differ) to help with the overall understanding of the
domain.

Girds are prepared in the following way.

Stage 1: Define the Domain

Define the domain where the grid will be used. Examples of domains can include
people, countries or different events and activities.

Stage 2: State the Elements

The elements are a representative sample taken from the domain. For example, the
domain of people can include elements such as self, mother, father, son, doctor,
etc.

The elements are then placed on a grid ready for further analysis as in the following
grid, showing elements of the domain: Countries.

Britain Chile USA Canada Brazil France India

Stage 3: Define the Constructs

Constructs provide the means of differentiating between the different elements
in the grid. Constructs can be set by the knowledge engineer, or provided by the
expert. To obtain each construct elements are defined in terms of some factor that
differentiates between the elements. Each factor, or construct, is then placed on
the left of the table.

In the following example, the constructs include hot (vs. cold) and holiday desti-
nation and English speaking.
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Crosses are placed inside the table to indicate which countries are hot, etc.

Britain Chile USA Canada Brazil France India

Hot X X X
Holiday destination X X X
English speaking X X X

When constructs are chosen by the knowledge engineer, care is needed to ensure
that the constructs can explain differences between the elements in the domain.
However, where the expert chooses constructs, there is a risk that they are not
understood, or will not be particularly relevant to the system being built. The
constructs are more likely to reflect the worldview of the expert, than provide
insights into the domain. A joint discussion between the knowledge engineer and
expert may help to overcome these problems.

Stage 4: Ranking the Elements

As an alternative to indicating which elements are/or are not members of each set
the elements can be ranked in order, starting with one, with respect to the constructs
identified. In other words, the constructs are used to order all of the elements.

Britain Chile USA Canada Brazil France India

Hot 5 7 4 6 3 2 1
Holiday destination 4 5 1 2 6 3 7
English speaking 1 4 3 2 6 7 5

When ranking the elements it is easy to take on board the opinions of multiple
experts and determine an average ranking.

Stage 5: Analysing the Grid

The constructs in the grid are now analysed to try to identify the differences and
similarities between them. Various tools can be used to do this. Where similarities
are discovered, then this information can be used to show how the different elements
relate to each other in the specific domain.

Activity 7
This activity will take you through the process of using a repertory grid.
1. Visit the WebGrid III page at: http://tiger.cpsc.ucalgary.ca:1500/WebGrid/

WebGrid.html.
2. Read the documentation at: http://tiger.cpsc.ucalgary.ca:1500/WGExisting.

html – you will find it useful to print this document.
3. Close the window to take you back to the main WebGrid page.
4. Under the heading Demonstrations of WebGrid III is a section related to

Expert System Grids.
5. Explore the demo grid about Cendrowska contact lens decision.
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As well as considering the type of interview to be performed the knowledge engi-
neer has other issues to consider including:

� how to document the knowledge acquisition process
� issues relating to the use of multiple experts.

Documenting the Knowledge Acquisition Process

Forms are used to broadly itemise the aims of the session, and can be given to
an expert in advance of the session, to be used as an agenda. The forms can be
completed during the interview as agreed by both parties.

Recording the results of knowledge acquisition process is important, as this allows
the knowledge bases that are ultimately developed to be validated. If the correct
paperwork is followed, it should be possible after a system has been developed to
find details of the interview that was the source of an item of knowledge. Knowing
this it will be possible to go back and question the relevant expert about the validity
of that knowledge.

Dealing with Multiple Experts

In this situation, more than one expert is interviewed to obtain knowledge about a
specific domain.

Knowledge acquisition involving multiple experts involves three distinct difficul-
ties:
� the problems of dealing with experts individually, plus
� the problems of coordinating human interactions – especially if time is short
� the obstacles and risks of trying to integrate different knowledge and different

methods of solving problems.

Clearly, using multiple experts can be difficult, and can involve obtaining conflict-
ing knowledge. The experts may use different reasoning techniques and different
processes to solve the problems, and these may not always be easily merged or
linked together. If multiple experts are required and it is found that they use con-
flicting knowledge the feasibility of developing the expert system should be ques-
tioned unless the experts themselves can resolve their conflicting problem-solving
approaches.

Despite the difficulties using multiple experts it is possible to iron out areas of
uncertainty or conflicting knowledge, and to use one expert as a validation tool.
This allows a higher quality knowledge base to be developed—potentially better
than any one individual expert.

Repertory grids can be used as a simple method to represent the opinions of several
experts. Each expert is asked to provide a ranked estimate and the values in each
element are simply averaged.
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Current Research

Knowledge acquisition tools have been developed to support the knowledge ac-
quisition process. In some of these the domain expert works directly with the
computerised tool.

The following websites have relevant information:

Automating Knowledge Acquisition

http://www.scism.sbu.ac.uk/inmandw/review/knowacq/review/rev12510.html

Flexible Knowledge Acquisition Through Explicit Representation
of Knowledge Roles

http://www.isi.edu/expect/link/papers/swartout-gil-sss96.pdf

Easing Knowledge Acquisition for Case-Based Design

http://www.comp.rgu.ac.uk/staff/smc/kbs/kacbd/

Summary

In this chapter, we have seen that various types of interview are a crucial knowledge
acquisition method. However, interviews:

� take time
� require planning
� require skill.

There is a range of interview types, and each should be used in appropriate contexts
and at appropriate stages in the total process. It is usual to start with unstructured
interviews, followed by structured interviews, and then careful use of event recall
interviews; being particularly careful that they do not degenerate into unstructured
interviews.

Other important knowledge acquisition techniques include documentation analy-
sis, questionnaires, formal techniques and observation analysis.

Self-Assessment Questions

Question 1

You have obtained information concerning different methods of transport, and now
need to construct an expert system to help people choose the most appropriate form
of transport for their particular needs.
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The modes of transport available are:

� walk
� cycle
� skateboard
� car
� train
� bus
� aeroplane
� tram
� taxi
� motor-bike.

Place these modes of travel in a repertory grid and choose three pairs of factors
that will help to differentiate people’s choices between the different modes.

Question 2

Investigate some of the repertory grid analysis tools by visiting the website below
and following the links to the grids themselves.

http://www.psyctc.org/grids/grids.html

Question 3

In which type of interview (unstructured, structured and event recall) would you
expect to find the following questions:

1. Starting from the first day of your last holiday, until the final day, please tell me
everything that happened.

2. How do you play chess?
3. If the traffic light is on red should I start the car or stop it?

Question 4

For the following two problems identify which types of interview would be ap-
propriate:

1. A knowledge engineer wishes to become familiar with a new subject area.
2. A knowledge engineer wishes to complete and check the knowledge obtained

from earlier knowledge acquisition sessions.

Answer to Self-Assessment Questions

Answer 1

Suggestions for factors are given below; however, there are many possible factors
that can be used.
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Walk Cycle Skateboard Car Train Bus Aeroplane Tram Taxi Motor-bike

Short 1 2 3 8 9 5 10 7 6 4
distance

Healthy 1 2 3 7 4 6 10 5 8 9
Limited 1 2 3 7 8 4 9 5 10 6

budget

Answer 2

No specific solution.

Answer 3

1. This would be appropriate in an event recall interview that is used to obtain
sequencing information and to check whether it matches knowledge collected
previously via other interview techniques. We may need to consider the entire
sequence activities starting at the very beginning and finishing at the very end
of the event. In this example, for instance, it may be necessary to consider
the actions leading up to the holiday from the first time that the holiday was
suggested, to the choice of destination and the preparations that were made in
order to go on the holiday. The post holiday sequence of actions may also be
important—how you got home, unpacked, etc.

2. This sort of question would be appropriate in an unstructured interview. Ques-
tions in this type of interview are often short and the answers are often long.
While this type of interview can often be time consuming, unstructured inter-
views are essential as they allow the expert to bring important issues to the
attention of the knowledge engineer.

3. This sort of question is typical in a structured interview where the knowledge
engineer is looking for specific information. The questions are often long and
the answers relatively short. As the knowledge engineer is looking for specific
information the questions need to be prepared in advance of the interview.
Structured interviews are good for filling in the gaps left from earlier interviews.

Answer 4

1. The two most appropriate methods here are tutorial interviews and unstruc-
tured interviews. However, it is worth remembering that even before conduct-
ing these interviews the knowledge engineer should consider doing preliminary
bookwork or talking to other people in order to learn some of the terminology.

2. This problem really has two parts: how to complete the knowledge acquisition
process and how to check it.

Structured interviews can be used to plug any known gaps in the knowledge but
what about unknown gaps? By conducting event recall interviews, particularly
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where difficult or unusual events are considered, issues will arise that were glossed
over by the expert or missed by the knowledge engineer. If no such issues arise we
can have some confidence that the knowledge obtained is complete.

Event recall interviews are also a useful method of checking the knowledge ob-
tained. Does the procedure followed during a real event actually match the proce-
dure as described in earlier knowledge acquisition sessions? The other interview
technique that is most obviously useful for the task of checking the knowledge is
the teach back interview—where the knowledge engineer prepares a presentation
to the expert and the expert verifies they understand the subject correctly. There is
one other very important method of checking the knowledge obtained. If a proto-
type expert system is created, incorporating the knowledge obtained, the quality of
the knowledge in the expert system can be demonstrated by testing the reasoning
powers of system developed.



4
Knowledge Representation
and Reasoning

Introduction

In this chapter on knowledge representation, we will be looking at different knowl-
edge representation schemes including rules, frames and semantic networks.

We will look at how to choose between them; the advantages and disadvantages
of each and how to represent knowledge in a form suitable for knowledge-based
systems (KBSs). We will also compare deep and shallow knowledge and consider
the issues of brittleness and explanation facilities.

The chapter consists of five sections:

1. Using knowledge
2. Logic, rules and representation
3. Developing rule-based systems
4. Semantic networks
5. Frames.

Objectives

By the end of the chapter you will be able to:

� explain how knowledge can be represented in declarative programs
� describe and analyse the inference process
� explain the principles of backward and forward chaining
� analyse the type of chaining used by a specific expert system (ES)
� explain how semantic networks represent data
� identify the advantages and disadvantages of semantic networks
� explain how frames can be used to represent knowledge
� evaluate the risks associated with developing unintelligent explanation facilities
� explain the concept of brittleness.

108
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SECTION 1: USING KNOWLEDGE

Introduction

This section introduces the subject of knowledge representation. It briefly looks at
the use of rules and declarative programming. Rule-based approaches to knowledge
representation are covered in depth in section 2 of this chapter.

Objectives

By the end of the section you will be able to:

� explain how knowledge can be represented in declarative programmes
� distinguish between shallow and deep knowledge in the context of ESs.

Different Types of Knowledge

Acquiring knowledge is one of the main objectives of humans. We have always
sought to obtain knowledge, to apply that knowledge to solve everyday problems,
and to expand on it to improve ourselves and our environment.

However, while some knowledge is easy to obtain and understand (e.g. what the
sequence and meaning of traffic lights is), other knowledge may be difficult to
obtain or interpret. For example, many of the problems being tackled by experts
are poorly understood because the subject areas are very specialised and experts
find it difficult to communication information on that knowledge area.

In many situations, experts do not have any formal basis for problem solving or
communicating the results of that problem solving. So they tend to use ‘rules of
thumb’ (heuristics) developed on the basis of their experience to help them make
decisions in their particular field.

Heuristics implies that knowledge is acquired more by trial and error than by
any definite decision-making process. This does not cast doubt on the value of
heuristics: the rules established by experts through experience can often be valuable
and this differentiates the ‘expert’ from less experienced people. An example of
a heuristic is the statement that people with high blood pressure are more likely
to have a heart attack. While not all people with high blood pressure have a heart
attack it is still a useful rule of thumb and if a doctor advised you that it was critical
to lower your blood pressure you would be unlikely to ignore this advice.
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Deep and Shallow Knowledge

Expert systems, can have two types of knowledge: deep and shallow.

Shallow knowledge indicates that the system has been built with a working knowl-
edge of the problem domain only and a system built on the basis of it will only be
useful in some very specific situations. If the problem facing the ES is not covered
by any of these basic relationships, then the system will not be able to provide a
solution to that problem.

Deep knowledge is knowledge of the fundamental laws on which a system is based.
This knowledge is not dependent on a specific situation and can thus be used to solve
a range of problems. As with a human expert, the system will be able to ‘understand’
the causal links within the knowledge base. Including this type of knowledge within
an ES is difficult, if not impossible, in many situations. Many systems are simply
too complex to show all the causal relationships, and experts may sometimes make
intuitive leaps to reach a conclusion, which the ES cannot mimic.

Shallow knowledge therefore tends to be:

� task dependent
� brittle
� additive
� but also provides effective reasoning.

On the other hand, deep knowledge tends to be

� task independent
� describes causal relations
� complete at a certain level of abstraction
� however reasoning with this knowledge can be difficult.

Activity 1
An ES has been produced to provide assistance in the diagnosis of faults in
Brand X televisions.

Explain how the concepts of shallow and deep knowledge could be applied to
this system.

Comment on how difficult deep knowledge is to apply in such a context.

Feedback 1
Shallow knowledge implies that the ES only has information concerning its
domain—perhaps a database of common faults and probable causes and solu-
tions for this particular brand of television. Using this knowledge the system
will provide correct fault-finding diagnosis on most occasions.
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However, this knowledge would not apply to fixing faults in TVs made by other
manufacturers nor to other types of TV receivers such as plasma screen TVs if
company X started to make these.

Deep knowledge could be built into the system, such as the relationship between
voltage, resistance and current (Ohm’s law) and other aspects of the physics of
electricity. This additional knowledge might allow the ES to diagnose faults in
other types of electrical equipment. However, such diagnosis would be work-
ing from first principles and reaching a diagnosis could be difficult and time
consuming. Deep knowledge is therefore more difficult to apply because it is
not based on specific knowledge of a particular piece of equipment that may
be gained from experience.

Representing Rules in ESs

Most decision-making rules within ESs can be represented using the IF. . . THEN
format, that is

IF 〈situation〉 THEN 〈action〉

Other clauses such as OR and ELSE can also be used within this construct to show
alternative situations or different courses of action.

For example, a simple rule could be:

IF Christmas day falls on a Monday,
OR Christmas day falls on a Tuesday
THEN many factories will close for the whole of Christmas week.

Features of Rule-Based Systems

The main features of rule-based systems are:

� They represent practical human reasoning in the form of IF. . . THEN rules. Most
humans use this type of statement (even if they don’t realise it) so the syntax
will be relatively easy to understand.

� The knowledge of the system grows as more rules are added. This implies that
the accuracy of the predictions made by the system will increase as more rules
become available.

� Where a conflict occurs between two or more rules, the rule-based system may
be sophisticated enough to try to choose the best rule to use.

� Use an inference technique (either backward or forward chaining—explained
later in this chapter) to manipulate expertise to solve a problem.
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Procedural vs. Declarative Programming

Procedural Programming

A program written in C++ or Java consists of a set of procedures that must
be performed in a strict sequence to accomplish a purpose. This is procedural
programming.

Key features of procedural programming include:

� The programme is constructed as a sequence of step-by-step ‘how to’ instruc-
tions. However, explanations may be included to tell the user why certain activ-
ities are being carried out.

� The programming format implies automatic response to stimuli; there is little or
no thinking about the response or course of action, these are included within the
programme.

Declarative Programming

Rules in a KBS stand alone as statements of truth or fact and can be used by an
inference engine to reach other true conclusions. This is declarative programming.
The sequence of actions taken during processing is not defined. The inference
engine will automatically select and apply rules as it sees fit.

Key features of declarative programming are listed below:

� It provides facts on a given knowledge domain, literally stating what things are.
� The statements within declarative programming provide information concerning

the associations between different objects.
� Knowledge is normally shallow or surface-level, providing examples of associ-

ations that experts can visualise easily.

Activity 2
Explain what type of programming each of the following statements are exam-
ples of:
1. Smoking causes cancer.
2. Find the price of a new car. If the price is less than £10,000, then purchase

the car, else leave money in the bank and check prices in another month.

Feedback 2
Statement 1 is an example of declarative knowledge because it provides a

statement about knowledge within a domain.
Statement 2 is an example of procedural knowledge because it provides a list

of instructions to carry out.
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Before a KBS can be used to make decisions, the knowledge that the system will
use must be encoded in some way and made available either as part of the ES itself
or readily accessible to it. Three common methods of encoding knowledge are:

� rules
� semantic networks
� frames.

If knowledge is to be held in the system, then some formal method of holding that
knowledge must be agreed to enable the user to encode the knowledge correctly.
The inference engine must understand this knowledge representation scheme if it is
to apply that knowledge to a particular problem and draw appropriate conclusions.
Thus the inference engine dictates the knowledge representation scheme used.
Some inference engines for example understand rules but not frames.

Activity 3
The main requirements for a knowledge representation language are given
below. What do you think the 1st, 4th and 5th of these requirements means?
Representational adequacy

Inferential adequacy. New knowledge must be inferred from a basic set of facts.
Inferential efficiency. Any inferences that are made from the data should be

made efficiently, so as not to waste user or processing time.
Clear syntax and semantics
Naturalness

Feedback 3
You should have been able to interpret the requirements approximately as
follows:

Representational adequacy. The system must allow you to represent all the
knowledge that you need to reason with.

Inferential adequacy. New knowledge must be inferred from a basic set of facts.
Inferential efficiency. Any inferences that are made from the knowledge should

be made efficiently, so as not to waste user or processing time.
Clear syntax and semantics. The knowledge in the system must be in a format

that can be understood and processed by a computer (i.e., inferenced).
Naturalness. The language needs to be easy to use. This means it must be in

a format that is familiar to humans and can easily be used to represent the
knowledge that is required in the ES.

Summary

This section has shown how knowledge can be stored in a KBS in the form of
rules.
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Self-Assessment Questions

Question 1

Does an Internet search engine use deep or shallow knowledge and declarative
or procedural programming? Make a series of brief notes highlighting the main
issues and considerations.

Question 2

You accidentally drop a plate and you instantly reach the conclusion that it will
drop to the ground. As you are currently standing on a concrete floor you expect
the plate to break on impact.

(a) Did you use deep or shallow knowledge to reach these conclusions?
(b) If a scientist wanted to calculate the trajectory of a rocket would they use deep

or shallow knowledge?
(c) Would it be advantageous to apply the knowledge a scientist has to the problem

of a plate dropping?

Answer to Self-Assessment Questions

Answer 1

Areas that you need to consider within your answer include:

An Internet search cannot, by its nature, include deep knowledge of any subject
area. It is a general-purpose tool for finding matches for keywords, rather than
looking for specific knowledge within a domain.

However, some element of deep knowledge may be noted in the system. The search
engine must ‘understand’ how to parse the questions or statements given to it so
that appropriate hits can be located for the user. For example, the question ‘tell
me about motor vehicles in the 1950’s’ could be given to the search engine. The
engine must be smart enough to realise that tell me about are not really part of
the search, and that 1950s is related to motor vehicles, otherwise a list of 1950s
websites could be provided.

The type of programming used is likely to be procedural, particularly where ques-
tions need to be parsed in a specific way, or websites searched for specific
keywords. The search engine is simply following a list of instructions to carry
out these actions.

The use of declarative knowledge is limited, because most of the activities
of the search engine can be carried out using a list of procedures, and the
engine does not have to understand any of the knowledge domains being
visited.
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Answer 2

(a) You know from personal experience that if you drop an item it will fall and
an item such as a plate will almost certainly break if it hits a hard surface.
You did not need to understand the detail laws of physics to reach this
conclusion.

(b) Understanding that items when dropped will fall will not enable a scientist to
calculate the trajectory of a rocket. To calculate this you need to understand the
laws of physics regarding gravity, momentum and motion. If you understand
these laws you can apply them to a range of situations, e.g. determining the
speed of a car rolling down a hill.

(c) You could determine what would happen to the plate based on the laws of
physics but the calculations would be long and complex. In performing such
calculation it would be possible to make a mistake. Why go through this long
and complex process, taking the risk of making a mistake, when we know
from years of personal experience what will happen?

From this example we can see that deep knowledge can be applied to a range
of problems (and this can combat the issue of brittleness described elsewhere in
this book) however it is not easy to obtain and can be difficult to apply. Thus for
practical purposes shallow knowledge may be better. The appropriate use of deep
or shallow knowledge is a decision that the knowledge engineer must make when
considering each system to be developed.
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SECTION 2: LOGIC, RULES AND REPRESENTATION

Introduction

This section explains the relationship between logic and rule statements. It then
goes on to describe how rule-based systems are constructed.

Objectives

By the end of this section you will be able to:

� describe and analyse the inference process
� interpret propositional logic statements
� write propositional logic statements
� explain the principles of backward and forward chaining
� provide examples of the inference process using chaining.

Propositional Logic

Propositional logic is one method of representing knowledge within ESs. In this
approach, symbols are used to show the relationship between different entities and
values.

Specifically the symbols have the following meanings:

∧and
∨ or
¬not
→ by implication
↔ is equivalent to
∀ for all
∃ there exists

Letters can be used to represent facts about the world. For example,

C = Barry drinks coffee
D = Barry eats cake

Using this narrative, statements such as the following can be made:

C ∧ D Barry drinks coffee and Barry eats cake
C ∨ D Barry drinks coffee or Barry eats cake
¬C Barry doesn’t drink coffee
C → D If Barry drinks coffee then Barry eats cake
C ↔ D If Barry drinks coffee then Barry eats cake and vice versa
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If statements are related to each other, then inferences can be drawn regarding the
information contained in the statements.

Activity 4
Use the two statements below to infer a possible third statement about a cloudy
day.

Cloudy ∨ Sunny
¬ Sunny → Leave sunglasses

Feedback 4
If the two states of the weather are cloudy or sunny, then if sunglasses are not
needed when the weather is not sunny, then the following must be correct:

¬ Cloudy → Take Sunglasses

In practice, more information would be required to make this a logical inference
since it is possible to not wear sunglasses even though it is sunny. This might
be a medical necessity for someone with severe problems with strong sunlight
however.

The idea of inferring information from statements is important within ESs, and
is discussed in more detail later in this section.

Propositional logic can include three different terms:

� constant symbols including names such as Barry
� variable symbols usually denoted by capital letters
� functional expressions containing a function followed by a number of arguments.

Statements in prepositional logic can be joined together using the symbols above to
provide more complicated logical statements. For example, the following statement
describes the food preferences of a snake called Slither:

Likes (Slither, carrots) ∧ Likes (Slither, cabbage)

In other words, Slither likes carrots and cabbage.

Finally, semantic statements can be expanded to include more general ideas. For
example, the statement

∀X (likes (Slither, X) → eats (Slither, X))

implies that Slither eats everything that he likes. However, as Slither is a snake we
may need to define X as a set of small mammals.
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Activity 5
Explain the following statements in English.
� ∃X (grass snake (X) → (¬eat (small mammals, X)))
� ∀ X (clouds (black, X) → rain (clouds, X))

Feedback 5
� There exists in the set of grass snakes at least one snake that does not eat

small mammals.
� From all clouds that are black, rain is possible.

Inference Rules and Propositional Logic

Inference rules can also work with propositional logic. The following activity
allows you to infer something about Barry from a combination of propositional
logic statements.

Activity 6
What can you conclude given the following two statements?

∀X (people (X) → breathe (X))
people (Barry)

Feedback 6
Because Barry is a member of the set of people, then Barry must breathe.
Breathe (Barry)

More complicated rules can be derived using the symbols already discussed above.
For example,

∀X (grass snake (X) → green (X))
Grass snake (Slither)
Means that Slither is a grass snake and therefore he must be green.

Rule-Based Systems

Rule-based systems provide an approach to representing knowledge within an ES.
As in the case of propositional systems rules can be used to describe what is true but
they can also be used to describe what you can or cannot do in different situations.

The basic construction for rules follows the structure:

IF something, THEN something else is true. For example,
IF raining THEN you-should-carry-an-umbrella
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Rule-based systems can be inferenced, i.e., processed by an inference engine, in
one of two ways—namely forward or backward chaining.

Forward Chaining

In forward chaining, the inference engine starts with a set of facts, which are used
to draw conclusions about the domain in which the system is working. Forward
chaining starts from the data and works forward to the conclusions or goals of the
system. The system is data-driven:

1. Enter new data.
2. Fire forward chaining rules.
3. Infer new data values from the rules fired.
4. Repeat Steps 2 and 3 until no new data can be inferred.
5. State the solution, or if there is no solution, then state that the rule base is

insufficient.

Forward chaining works with data held in the volatile memory of the computer;
this means that the data will be amended as the program is run. Data is amended
as a result of rules firing.

Activity 7
This activity will help you understand forward chaining by asking you to apply
the process to a small example.

Consider a system with three rules:
1. If someone is a third year student, then they need
a job.

2. If someone is a third year student, then they live
on campus.
3. If someone needs a job, they will look at job ad-
verts.

Suppose we put the following data into memory:

John is a third year student.

What will happen?

Feedback 7
You should have been able to recognise that in forward chaining, because the
system is constantly alert for new data the system would have searched all the
rules for any whose conditions weren’t true before but are now. It then adds
their conclusions into memory.

In this case, Rules 1 and 2 have conditions, which match this new fact (John
is a third year student.). So the system will immediately create
and add the two facts:
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� John needs a job.
� John lives on campus.
These facts in turn can trigger rules. As each arrives, the system would look for
yet more rules that are made true. In this case, the fact John needs a job would
trigger Rule 3, resulting in the addition of another fact into memory:
� John will look at job adverts.
The fact that John lives on campus would not trigger anything else.

In some situations, it may appear that two or more rules should fire at the same
time; in this case conflict resolution strategies will be required to determine which
rule is to fire. The rule relating to data that has changed most recently will often
take precedence. In other systems, rules are applied on a first come first served
basis, i.e., as soon as an appropriate rule is found that can be applied, search for
further applicable rules ends.

To summarise then, in a forward chaining system:

� Data is normally entered prior to the system commencing the inference process.
� Rules are normally checked individually.
� Relevant rules are grouped together to make the system easier to write and

validate.
� Rules only fire when all the information concerning that rule is available.
� The inference engine is not programmed to ask questions and obtain new infor-

mation while the program is running.
� Multiple conclusions can be reached.

While this inference process does work, it can be very time consuming and in-
efficient, especially where there are many hundreds or thousands of rules to be
searched.

Backward Chaining

In backward chaining, the system starts with a hypothesis, then the truth or other-
wise of the hypothesis is proved by checking the rules within the domain. In other
words, the system is driven from the goals back to the data.

The basic steps involved in backward chaining are as follows:
1. State a specific goal.
2. Find rules that resolve the goal, i.e., answer the question.
3. When the program is running, the user answers questions to satisfy the an-

tecedents of rules as required.
4. Obtain a result—which is that the goal can or cannot be achieved.

In backward chaining, the system does no work until required, i.e., goal is specified.
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Activity 8
This activity will help you understand backward chaining by asking you to
apply the process to a small example.

In the same three-rule knowledge base as we used in the previous activity we
add the data:

John is a third year student.

What does the system do immediately?

What does the system do when we ask the following question:

Is there anyone who will look at job adverts?

Feedback 8
You should have been able to recognise that in backward chaining, because the
system is goal driven, the system would do nothing at all until it was asked a
question, i.e., provided with a goal to seek or a hypothesis to test.

When asked the question

Is there anyone who will look at job adverts?

the system would try to answer it. The first step would be to search either for
a fact that gives the answer directly, or for a rule by which the answer could
be inferred. To find such a rule, it searches the entire knowledge base for rules
whose conclusions, if made true, will answer the question.

In this example, there are no facts directly giving the answer; there’s one rule
whose conclusion, if true, would supply an answer: Rule 3.

The system next checks the Rule 3’s conditions. Is there anyone who needs
a job? As with the original question, we look either for a fact that answers
directly, or for a rule. There are no facts, but Rule 1 is relevant.

So we now check its conditions. Is there a third year student? This time, there
is a fact that answers this: John is a third year student. So we’ve proved Rule
1, and by doing so also proved Rule 3, and that answers the original question.

But what if we did not know that John is a third year student. If no rule provides this
as a conclusion and this is not currently known, then backward chaining systems
will ask the user for an answer. Backward chaining systems will therefore engage
in a dialogue with the user.

In the example above, backward chaining resolved the specific goal only—it did
not determine that John lives on campus as this was not relevant. Forward chaining
would find every possible conclusion.
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Forward and backward chaining are inference methods, literally to try to infer
from a set of rules what conclusion can be reached, or to infer whether or not a
hypothesis is true given the rules available.

Activity 9
Forward chaining systems are said to be data driven, while backward chaining
systems are said to be goal driven.

How else might this distinction be described?
Forward chaining systems
Backward chaining systems

Feedback 9
Forward chaining systems start with known data and then fire those rules in a
specific order to infer new information.

Backward chaining systems start with a goal and then try and match given rules
to that solution obtaining data as required.

So forward chaining systems work from the data given to them, while backward
chaining systems work from the specified goal.

Activity 10
Below are some situations where forward chaining may be used within an ES.
Suggest at least one example of each of these situations.

Suggest one situation in which forward chaining would not be used.

Obtain all the outputs that can be concluded about a set of data.
Many conclusions are possible from a single data item.
Situations where it is important to communicate new conclusions to a user in a

timely manner.

Feedback 10
Possible examples of forward chaining are given below.

Obtain all the outputs that can be concluded about a set of data.
� Monitoring for mechanical problems on a production line. In this type of

situation, there will be sensors or gauges that automatically collect such data
without special arrangements having to be made. It is possible that more than
one fault may appear at the same time.

� Scanning a new loan application for problem areas. Several different problems
may appear in the same application.
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Many conclusions are possible from a single data item.
� A fall in temperature can be caused by many different environmental fac-

tors including rain, nightfall, increase in cloud cover, etc. The data must be
checked to find out which situation is correct.

Situations where it is important to communicate new conclusions to a user in a
timely manner.
� Advice to shut down faulty machines—such as a nuclear power plant.
� Data entry errors.

Uses of Backward Chaining

The table below shows the circumstances under which you might use backward
chaining.

Reason for backward chaining Examples

There is a clear set of statements, which must
be confirmed or denied.

Is machine one causing the quality control
problem?

A large number of questions could be asked of
the user, but typically only a few are necessary
to resolve a situation.

When processing of a motor claim for
vandalism; it is not necessary to know about
personal injuries.

It is desirable to have interactive dialogue with
the user.

Asking machine operator detailed questions
about suspect machinery.

Rule execution depends on data gathering
which may be expensive or difficult.

Real-time observations by the user.

Comparison of Forward and Backward Chaining

The following factors will help you consider the choice between a forward or
backward chaining ES.

Factor Reason

The logical reasoning process. Some processes naturally use forward
chaining logic, e.g. using errors in computer
systems to determine the cause of the error.

What are the inputs and where do they come
from?

Where there are few inputs but many outputs,
then forward chaining will be more efficient.

What are the outputs and where to they go? Where there are few outputs, then backward
chaining is more appropriate.

Hypothesis driven. Backward chaining is relatively efficient where
hypotheses are involved.
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Examples of Forward and Backward Chaining

The table below provides some examples of forward and backward chaining.

Use forward chaining Use backward chaining

Sensor indicates machine failure; need to find
out what happens next.

Defect observed in product; need to locate
faulty machine.

User types erroneous input for insurance
claim; need to alert user.

Suspect an overpayment on an insurance
claim; need to check form for erroneous input.

Stock value suddenly drops; need to predict
market responses.

FTSE industrials drop; need to know if a
particular stock will be affected.

Note: FTSE: Financial Times Stock Exchange Index.

Now that you have learned about the techniques involved in the development of
KBSs, it is worth being alerted to some of the main problems that can emerge in
the actual building stage.

Self-Assessment Questions

Question 1

You are designing a KBS to diagnose faults in a nuclear power station. The plant
operators wish to know everything possible about the state of the plant at any given
time. Which of the following inference mechanisms would you use for this and
why?

� Forward chaining
� Backward chaining.

Question 2

The citizens advice bureau want a KBS to advise clients whether or not they are
entitled to housing benefit. Which of the following inference mechanisms would
you use for this and why?

� Forward chaining
� Backward chaining.

Answer to Self-Assessment Questions

Answer 1

Due to the possibility of there being more than one problem, and that all possible
problems need to be checked, forward chaining would have to be used. Clearly, this
will require that all facts about the plant’s current status are obtained in order that
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the system can give an overall diagnosis. However, this input is probably automatic
so even though a lot of processing will have to be done by the computer it is not
time consuming for the operators.

Answer 2

The system is trying to find out if a fact is true or not, i.e., is the client entitled to
housing benefit ‘yes’ or ‘no’.

If backward chaining were used the system would ask only the questions needed
to determine the required answer. These facts can be gained while the system is
running.

If forward chaining were used all the data would need to be collected up-front.
This may require the client to answer many questions that are not relevant to
the specified goal. For example, when considering other benefits the system may
need to know about the client’s disability status but this may not be relevant when
considering the specified goal. Therefore the use of forward chaining could result
in many facts being gathered which are never used. Processing an application
would become a time consuming and inefficient process.
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SECTION 3: DEVELOPING RULE-BASED SYSTEMS

Introduction

In this section you will learn about some of the difficulties of developing rule-based
systems and how these can be avoided or overcome.

Objectives

By the end of the section you will be able to:

� identify the main problems in developing rule-based systems
� evaluate the role of explanation facilities in KBSs
� describe the process of evaluating KBSs
� describe the process of validating KBSs.

Main Problems in Building a KBS

Two of the main problems to avoid in building a KBS are:

� lack of explanation facilities
� brittleness.

Explanation Facilities

Explanation facilities are provided within an ES to explain to the user of that
system how decisions have been made by the system, i.e., why particular rules
have been applied. They are therefore a key part of any ES, with research showing
(Wolverton, 1995) that users place significant reliance on explanation facilities.

The need for explanation facilities may appear to be obvious. Humans like to
understand why they are being given advice by an expert so that they can see
why certain courses of action have been recommended and they can see problems
associated with other alternative actions. The output from ESs must therefore
provide a similar level of explanation.

However, explanations provided by an ES may not be as detailed as those provided
by a human expert. The latter has access to a significant amount of knowledge
outside their area of expertise. The ES, on the other hand, only has knowledge in
a very specific subject domain. Answers and explanations provided by the system
may well be limited because those answers cannot be related to any wider context.
Similarly, explanations will be limited where the knowledge base does not provide
sufficient detail in the specific subject domain.
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Rule Tracing

Rules within a knowledge base can be checked in two ways to ensure that the ES
is providing the correct solutions to queries.

� A how trace enables the user to find out how an ES has arrived at a conclusion.
� A why trace helps the user understand why a particular question is being asked.

While both traces provide the user with some feedback on how the ES is working,
they also suffer from the issue of simply providing a chain of reasoning. In other
words, the traces simply link a problem and a solution—the ES can explain why a
particular conclusion was reached but does not necessarily know why the appro-
priate rules were in the knowledge base in the first place. The system can state IF
something THEN something else happens, but not why those events are linked—
providing the ‘why’ sometimes calls for deeper knowledge and understanding.

Building Explanation Text into an ES

Explanation text can be built into the ES to help the user understand the outputs
provided. For example, take the situation of a valve regulating water flow illustrated
in Figure 4.1.

Input

Output

level
Liquid

FIGURE 4.1. Valve regulating water flow.

When the valve is opened, then water will escape from the system.

A question and answer that can be built into the system could be:

Q. What happens to the water level when the value is opened a little more?
A. It will go down.

To check the logic in this statement, additional explanation can be added:

Q. Why?
A. Because the output flow will be larger than the input flow
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Q. Why?
A. Because more water will be released through the output pipe
Q. Why will more water be released through the output pipe?
A. Because opening the valve widens the hole, letting more water through
Q. Why does this happen?. . .

Having placed these explanations into the system, questions can be asked such as:

How did you arrive at that answer?

The ES can then provide the rule explanations to show how the answer was derived.

For example:

User. What happens to the water level when the valve is opened?
ES. The water level will go down.
User. How do you know this?
ES. Because I applied Rule 46 which states when the valve opens, more water will
be released. I then applied Rule 47 which states when more water is released then
the water level will fall.

Activity 11
Here are four rules from an ES that is used to determine whether or not to turn
on a heater.

R1: IF door open AND dark THEN ADD cold
R2: IF breezy THEN ADD door open
R3: IF cold THEN ADD start heater AND close door
R4: IF close door THEN DELETE door open

It is currently breezy and dark.

Write out a possible response from the ES in answer to the question.

Why did you apply Rule 2 first?

Feedback 11
The expert system, explaining why it applied Rule 2 first, would have given an
explanation similar to the following:

‘I was trying to determine whether or not a heater needs to be turned on.
From the information available, I know that it is breezy, so I need to check
whether or not a door is open as this is one of the reasons for cold’.

If the system was backward chaining, then it would apply Rule 3 first. If it was
forward chaining, then it would apply Rule 2 first simply because it is the only
applicable rule.
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Dangers of Unintelligent Explanations

Many ES shells support IF. . . . THEN. . . . BECAUSE rules, e.g.

IF you are cold
THEN turn on a heater
BECAUSE this will warm you up

If an ES recommended turning on a heater and the user asked for a justifica-
tion of this then the ‘BECAUSE’ part of the rule could be displayed to explain
the recommendation. However, this is just some text that is regurgitated on de-
mand. There s no ‘intelligence’ behind this justification. In particular there is no
mechanism to ensure that this recommendation is appropriate to your individual
circumstances. The system would still display the same justification if you were
standing in a swimming costume at the North Pole! Clearly in such a situation
better advice would be to put on warm clothing.

While explanation texts are useful, there are various dangers to be avoided in
writing them.

� As systems grow in apparent intelligence they are given more responsibility. Care
must be taken not to place too much trust in the ES; the user is still responsible
for checking any ES answer for reasonableness.

� Adding poor quality or simplistic explanation facilities can inspire undue confi-
dence in a system that does not warrant it. This may mislead the user into taking
incorrect decisions.

� The apparent intelligence may vastly exceed the true level of understanding. It
can be too easy for users to rely on the system believing that it is infallible.
Of course, the ES is only as good as its rule base, and if this is incorrect, then
solutions from the system will also be wrong. Poor quality explanation facilities
may encourage the user to accept erroneous recommendations.

Brittleness

Brittleness is a property displayed by a KBS, where the apparent level of intelli-
gence exceeds the true level of intelligence. The system may appear to be producing
appropriate answers however when the problem to be solved requires knowledge
not contained within the system it will not be able to solve the problem. Worse
still the system may not recognise the limitations of its knowledge and will then
propose a faulty solution. This situation can be made worse by the inclusion of an
unintelligent explanation facility which will encourage the user to accept the faulty
output.
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Activity 12
This activity will help you apply your understanding of the concept of brittle-
ness in a KBS to an actual example.

Consider a medical KBS in which brittleness is a characteristic of the knowl-
edge base. What type of problems might emerge in relation to its responses to
diagnosis questions?

What might a human doctor do when faced with a failure of their ‘knowledge
base’?

Feedback 12
You should have been able to recognise that the dangers associated with brit-
tleness in a medical ES include:
� The system will fail to diagnose disorders that were unknown when its knowl-

edge base was developed.
� It could reach the wrong diagnosis and try to justify it.

Hopefully, a human doctor will recognise the limits of their own knowledge
and will seek help. In other words a human overcomes brittleness by:
� remembering previous situations
� reasoning from analogous situations
� using general knowledge
� learning more about the current problem.

It is relatively difficult to build all these features into an ES. Recent work on
defining ontologies is helping to overcome the problem of brittleness. By defining
an ontology the limits of knowledge contained within a system can be specified and
thus it is possible that an ES could also recognise the limitations of its knowledge
base (theoretically at least).

We should perhaps note that brittleness does not imply that a system was faulty
when developed. An ES may have been able to diagnose every known ailment
with 100% accuracy. However, as new ailments and treatments are discovered it
is possible that the system will be used to diagnose patients with these disorders
and it will then fail to do so as knowledge of these disorders is not included in the
knowledge base.

The remainder of this section is devoted to the subject of evaluation and validation
of KBSs. It must be stressed at the outset that you do not build a KBS then
evaluate and validate it; these activities must be carried out as ongoing parts of the
development process itself.
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Evaluation of KBS

Evaluation of a KBS is an attempt to assess the overall value of the KBS. Evaluation
of a KBS means checking, not only that the KBS has acceptable performance levels,
but also that the system is useable, efficient and cost-effective.

The evaluation of a KBS involves two more terms, namely validation and verifi-
cation.

� Validation measures the performance of the KBS. In effect, the output from the
system is compared to the output that would be provided by an expert. A check
is then made to ensure that the system is performing to an acceptable level of
accuracy.

� Verification is checking that the KBS has been built correctly, i.e., that the rules
are logical and consistent with the knowledge obtained via the knowledge ac-
quisition process.

Evaluation is therefore part of the overall quality control procedures in building a
KBS.

The Need for Evaluation

Evaluation of KBS is required in general terms to ensure that knowledge of the
real world has been correctly entered into the knowledge base of the KBS.

Activity 13
In this activity you will explore the types of verification available in a number
of knowledge engineering tools.

Search the Internet for reference to the tools below and make brief notes about
the validation and checking function of any three:

Tool Function
COMMET
ONCOCIN RULE CHECKER
KB-REDUCER
COVADIS
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Feedback 13

COMMET Syntactic checking of the representation.
ONCOCIN RULE CHECKER detects the following issues on

attribute-value rule bases:
� conflict
� redundancy
� subsumption
� missing rules.
Rules are grouped by their concluding
attribute, forming a table for each group.
Verification issues are tested on each
table by static comparison of rules.
Inconsistencies and redundancies
requiring more than two rules to occur
cannot be detected. This problem is
solved in KB-REDUCER and
COVADIS.

KB-REDUCER detects inconsistencies and redundancies
in forward chaining and propositional
rule bases.

COVADIS detects inconsistencies in forward
chaining and propositional rule bases.

There are three layers of distortion that can occur during this knowledge transfer
procedure, as shown in Figure 4.2.

Real world domain

Human expert 

Knowledge engineer

Knowledge base

Distortion

Distortion

Distortion

FIGURE 4.2. Distortion in the knowledge transfer
process.
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Activity 14
This activity draws on your previous knowledge of communication (human to
human and computer network) and systems development to help you identify
sources of distortion in the knowledge transfer process.

Complete the table below with suggestions of where distortion might appear at
the various interfaces in the knowledge transfer process.

Interface Cause of distortion
Real world domain—human expert
Human expert—knowledge engineer
Knowledge engineer—knowledge base

Feedback 14
You should have been able to identify some of the following possible causes of
distortion:

Interface Cause of distortion
Real world
domain—human expert

Distortion may occur between the real world
domain and the human expert because the expert
does not fully understand the real world context of
their (possibly theoretical) knowledge. This can
occur where the expert does not have the depth of
experience in a particular domain, or where the
knowledge in that domain changes frequently and
the expert has difficulty keeping up to date.

Human expert—
knowledge engineer

Further distortion occurs when the knowledge
engineer attempts to elicit knowledge from the
human expert. The engineer may not have
sufficient knowledge of the domain, or the expert
may not fully explain elements of the domain
sufficiently well, resulting in an incomplete
record of the domain.

Knowledge engineer—
knowledge base

Finally, the knowledge engineer may incorrectly
record the domain knowledge into the rule base of
the KBS. The knowledge engineer may not
realise this has happened, either because the
elicited knowledge was incorrect in the first place,
or due to lack of skill resulting in conflicting rules
not being recognised.



134 An Introduction to Knowledge Engineering

Evaluation of a KB

Verification Validation

Internal quality
checking based on 
logical coherence 

Potential for support
by tools 

Gaps in knowledge

False knowledge

Expert and
collection of proof

cases needed 

FIGURE 4.3. Evaluation of a knowledge base.

Validation and verification help to find these distortions in knowledge in various
ways. Figure 4.3 shows some of the objectives of each method.

Activity 15
Consider how the distortion between the knowledge engineer and the knowl-
edge base can be decreased or eliminated?

Feedback 15
There needs to be some method of checking that knowledge within the knowl-
edge base is correct. The quickest method is to ask the human expert to check the
knowledge in the knowledge base by asking the KBS questions and checking
the responses. This process actually removes distortion caused by knowledge
transfer from the expert down to the knowledge base itself.

Verification

Verification of a KBS is likely to involve checks for the following:

� Syntactic coherence—to check that all objects in the KB are correctly defined
with respect to the inference engine.

� Logical coherence—to detect logical contradictions.
� Contextual coherence—to check that the KB is consistent with the model of the

problem.

Examples of the type of errors that verification of the KBS is trying to identify are
as follows.
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Subsumed Rules

These occur when two rules have the same conclusion but one rule has additional
conditions. For example,

Rule 1. IF A AND B AND C THEN X
Rule 2. IF A AND B THEN X

Rule 1 is subsumed within Rule 2 and could automatically be eliminated from
the knowledge base without affecting its reasoning. However, the knowledge ac-
quisition process should really be checked to confirm which of the two rules are
correct.

Both rules cannot be logically correct; Rule 1 is incorrect if C is not necessary. If
it is necessary, Rule 2 is incorrect.

Unnecessary IF Conditions

This situation occurs when the conclusions of two rules are the same and, except
for one, the conditions of the rules are the same and this condition is reversed. For
example,

Rule 1. IF the patient has pink spots AND has a fever THEN the patient has
measles.

Rule 2. IF the patient has pink spots AND does not have a fever THEN the patient
has measles.

These two rules could be combined to form one simpler rule. . . .

Rule 3. IF the patient has pink spots THEN the patient has measles.

However, once again the source of the two rules should be checked and the appro-
priate rules amended or deleted.

Validation

In general terms, validation of a KBS involves ensuring that the work domain
is correctly linked to and reflected in the knowledge domain. Checking this link
means:

� defining the work domain (normally carried out at the beginning of the KBS
project)

� defining the proof cases to use
� deciding how many proof cases to use.

Proof cases test the KBS by ensuring that the results from the KBS conform to the
results already predicted by the human expert. The KBS will be validated where
the proof cases match those of the human expert.



136 An Introduction to Knowledge Engineering

The number of proof cases required depends on variables such as the number of
rules in the KBS and the accuracy required from the outputs. As the number of
rules and the accuracy required increases, the number of proof cases also increases.

Validation may also involve checking the output from the KBS to some pre-defined
measures such as:

� Accuracy—how well the system reflects reality
� Adequacy—how much of the required knowledge is included within the

knowledge base
� Realism—whether the KBS provides realistic solutions
� Sensitivity—how changes in the knowledge base affect the quality of outputs
� Usefulness—how useful the outputs are for solving problems
� Validity—whether the outputs can be used to make accurate predictions.

The precise validation tests may vary according to the KBS being tested.

Standards in KBS Development

Using validation and verification controls will help to ensure that the finished
KBS meets its objectives, and check that the knowledge base is providing correct
answers to problems.

There are other factors which have contributed to the adoption of standards for the
general software development process, i.e., including:

� The organisation producing the software needs to provide users with quality
software that operates satisfactorily.

� The need to develop software within the constraints of time, money and available
staff.

� The finished product must be at an acceptable level.
� The product must be easy to maintain, so documentation is an important area

which must be addressed by any standards.

In 1991, only 13% of organisations claimed to use any formal or semi-formal
method to validate their KBS. Methods being used were:

� Qualitative modelling
� Induction
� Customer satisfaction
� Regression testing
� Conventional testing
� In-house methods.

This was a relatively low percentage, although it probably related to the lack of
experience in producing KBS at that time. Hopefully, the percentage of projects
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being validated has increased significantly since then, although there is a lack of
empirical evidence to support this hope.

Another method of software validation is to use the International Standards Or-
ganisation standard 9003-3, which relates to software development generally (see
Figure 4.4).

Quality system framework Quality system lifecycle Quality system support

1 Management responsibility 5 Contract reviews 14 Configuration management
2 Quality system 6 Purchaser requirements 15 Document control
3 Internal quality audits 7 Development planning 16 Quality records
4 Corrective action 8 Quality planning 17 Measurement

9 Design and implementation 18 Rules, practices and conventions
10 Testing and validation 19 Tools and techniques
11 Acceptance 20 Purchasing
12 Replication, delivery and

installation
21 Included software product

13 Maintenance 22 Training

FIGURE 4.4. The ISO9003-3 standard.

While this standard is not directed specifically at KBS, KBS and other application
software share most of the development process. Application of the ISO 9000-3
will therefore help to provide quality KBSs.

The last area of quality to mention is the provision of appropriate documentation
to allow the system to be used effectively. Documentation should be provided in
three areas:

� The knowledge acquisition process should be adequately documented with tran-
scripts of interviews, etc. If this is done then the source of individual items of
knowledge contained within the ES can be identified and the knowledge can then
be checked.

� User documentation so users understand how to use the KBS.
� Technical documentation so that the KBS can be amended by another software

developer if required. The technical documentation is likely to be quite detailed
and be much more extensive than the user documentation.

Summary

This section has explained how knowledge can be placed into ESs using rules. You
also learned how chaining is used to determine results or prove a hypothesis from
that knowledge. Finally, you learned about some of the problems associated with
explanation and brittleness in KBSs as well as how KBSs can be evaluated and
validated.
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Self-Assessment Questions

Question 1

Using an ES

Try and find an ES on the Internet and then determine what sort of chaining is
being used within that system. Explain your answer.

If you are not sure where to start looking for a system, you could try
www.firstdirect.co.uk. This is an on-line banking site for the provision of vari-
ous financial services such as mortgages, bank accounts, etc. There are some very
simple ESs being used on this page, such as a mortgage calculator and application
form to join the bank.

You might also try the ESTA system.

Other similar sites will also have this type of system available.

Question 2

A KBS is commissioned to diagnose spillages in a chemical factory. The system
works for 2 years with 100% accuracy. During those 2 years the factory expands
the range of chemicals it produces and starts to produce and store some extremely
strong acids. At some stage an accident occurs, as they always do, and one of
these acids is split. The cleaner follows the correct protocol and uses the KBS to
diagnose the spillage before cleaning it up. The KBS is not aware of these new
acids and incorrectly diagnoses the spillage. The cleaner follows the instructions
given but as a consequence of the misdiagnosis is badly hurt.

Consider your answers to the following questions:

(a) Consider the following options and decide what caused this problem:

� The system wasn’t validated
� The KBS was brittle
� The KBS was not verified.

(b) Is this a fault of the knowledge engineer who developed the system in the first
place?

(c) What could have been done to prevent this problem?

Answers to Self-Assessment Questions

Answer 1

Most banking sites are trying to determine whether or not you are a good credit
risk—that is, that you can manage your money correctly without going overdrawn.
It is likely that both backward and forward chaining is being used.
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There is a definite goal to the credit application—so backward chaining can be
used to check from this goal to ensure that all necessary data has been obtained.
In this situation, the data refers to a person’s name, address, etc. Each item of data
scores so many points, and a critical number of points will be needed to obtain
specific services from the bank.

However, where the goal is not achieved, other evidence may be available to
check the person’s status—so forward chaining could be used to determine what
information has already been obtained, and what additional information will be
needed to meet the goal. For example, if a person has recently moved jobs or to a
new address, then additional evidence (perhaps last address or detailed employment
history) will be needed to ‘top up’ the points to reach the goal number.

Answer 2

(a) This is an example of a brittle system. The system worked perfectly when it was
developed but when it was used to solve a problem outside of its knowledge
the system failed.

(b) The knowledge engineer developed a system that was working with 100%
accuracy when installed—it was only later that the system failed as the cir-
cumstances it was working in changed. Still in today’s litigious society that
may not prevent the knowledge engineer from being sued. So what could they
have done to legally protect themselves? The best protection the knowledge
engineer has is to demonstrate that they developed the system following a
professional methodology and to a professional standard and that the pro-
cess was documented. Thus, if the system was properly validated and this
was documented the documentation would show that the system was working
well when the system was installed. Further the knowledge within the sys-
tem would also be documented and this would indicate which chemicals the
system could correctly diagnose. Management at the chemical factory were
then, one presumes, made aware that if new chemicals were stored on site the
knowledge in the system would need to be updated to cover these.

(c) One way of preventing this accident would have been to develop an ontology
within the KBS. If the system understood what chemicals it could diagnose
then it could have checked the list of chemicals stored at the factory against
this ontology. Knowing that new chemicals were stored at the factory the
KBS could have refused to attempt a diagnosis as it would then know that its
knowledge base was inadequate.
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SECTION 4: SEMANTIC NETWORKS

Introduction

This section introduces semantic networks and their use within KBSs.

Objectives

By the end of this section you will be able to:

� explain how semantic networks represent data
� discuss the advantages and disadvantages of semantic networks.

Knowledge Representation in Semantic Networks

One of the oldest and easiest to understand knowledge representation schemes is
the Semantic Net, which is a graphical representation of knowledge that shows
objects and their relationships.

In these networks, objects are shown by nodes, and links between the nodes de-
scribe the relationship between two objects, for example,

� Mary is an instance of trainer, and trainer is a type of consultant.
� A trainer trains a programmer and a programmer is an employee.
� Joe is an instance of programmer.

From this we can clearly see the relationship that may exist between Mary and
Joe.

Activity 16
This activity will help you begin to visualise a semantic network.

Draw a diagram representing the relationships between Mary and Joe, indicat-
ing, in the process, the relationship between a trainer, consultant, programmer
and employee.
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Feedback 16
Your diagram should be similar to this:

Trainer

Employee

Programmer

Mary

Joe
Consultant

Such a diagram is the beginning of a semantic network but this can be improved
by more closely defining the nature of the relationships.

Activity 17
This activity shows you how to describe the relationships in a semantic
network.
1. Identify which lines on the diagram might be labelled ‘is a’, i.e., to indicate

that object A is an instance of object B.
2. Apply the labels to your diagram.
3. Decide on an appropriate label for the line that should not be labelled with

this relationship.
4. Apply an arrowhead to the lines to indicate the direction of the ‘is a’ rela-

tionship.
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Feedback 17
Your diagram should now look like this:

Trainer

Employee

Programmer

JoeConsultant

is_a

is_ais_a

trains

is_a

Mary

Semantic networks are a powerful and flexible graphical way of representing
knowledge. They are often used as a communication tool between the knowledge
engineer and the expert during the knowledge acquisition phase of a project.

Inheritance

Inheritance is concerned with how one object inherits the properties of another
object.

Activity 18
This activity helps you grasp the concept of inheritance.

In the diagram you created in the previous activities, identify from which classes
Mary and Joe inherit properties.

Feedback 18
You should have been able to recognise that Mary, in being a trainer, inherits the
properties of the consultant class and that Joe, in being a programmer, inherits
the properties of the employee class.

It is possible to describe this graphical representation of knowledge simply and
precisely and this will help to achieve the objectives of the semantic network as a
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Reptiles

Snake No legsCrocodile

Small Green

‘Sidney’ ‘Slither’Vegetarian

is_ais_a

is_a

is_ais_a

Size Colour

is_a

Characteristic

Grass Snake

FIGURE 4.5. A graphical representation of a semantic network.

store of knowledge for use by a KBS. The hierarchical nature of the diagram helps
explain the elements of the network. For example, in Figure 4.5., Grass Snakes
are a sub-class of the total class of reptiles—so all grass snakes must be reptiles.
Similarly, both Slither and Sidney are grass snakes. As the class of grass snakes
also has properties of Small and Green, then Sidney and Slither must be small and
green as they belong to this class. However, Slither is a vegetarian, so this attribute
applies to Slither only (grass snakes are normally carnivores).

However, the very simplicity of the semantic network means that it can actually be
too flexible, i.e., there are too many ways to represent something. This can lead to
extreme complexity when representing exceptional cases, e.g. if Sidney was not
green due to some illness.
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Activity 19
Look at the following diagram.

What conclusions might you draw about what slither eats?

Reptiles

Snake No legsCrocodile

Small Grass Snake Green

‘Sidney’‘Slither’Vegetarian

is_ais_a

is_a

is_ais_a

Size Colour

is_a

Characteristic

Meat

Eats

Feedback 19
You should have been able to recognise that from this semantic network it would
be possible to conclude that the grass snake Slither is a vegetarian and Slither
eats meat. Clearly, these conclusions are contradictory. Which conclusion we
reach depends where in the network we start and which links we follow. This
process is unreliable.

Thus, to perform inference using a semantic network you must understand the
meaning of the links and follow the correct links. As the links can be many,
and varied, performing inference using a semantic network is complex and
unreliable.

Representing Exception Data

When exception data (e.g. Slither is yellow) is stored on a semantic network it can
quickly become large, cluttered and difficult to read.
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Reasoning with Semantic Networks

Semantic networks can be very difficult to reason from, as an inference engine must
understand what type of link exists between nodes within the semantic network,
and there are no constraints on allowable links.

To understand the semantic network that describes Slither, you need to understand
the links, i.e., the words ‘is a’, ‘eats’, ‘vegetarian’, etc. If an inference engine were
to reason with this network, then it must have some understanding of these words
and this is difficult to build in.

Semantic networks are particularly good at representing knowledge in the form
of hierarchies. They can also represent complex causal relationships—though the
diagrams can become large and complex. Their explicit links and visual diagrams
can make knowledge quite clear. Much of the reasoning with semantic networks
is in the form of deducing indirect links between concepts based on direct links
explicitly stated. This is difficult for an inference engine to achieve in practice
however, because it needs to understand the links and the conclusions depend
on successfully searching the network. For this reason, semantic networks are
often used only as a communication tool between the knowledge engineer and the
domain expert and after the knowledge has been obtained it is then converted into
another format that is easier to process.

Advantages of Semantic Networks

The advantages of semantic networks to represent knowledge include:

� They tend to be a powerful and adaptable method of representing knowledge
because many different types of object can be included in the network.

� The network is graphical and therefore relatively easy to understand.
� Can be used as a common communication tool between the knowledge engineer

and the human expert during the knowledge acquisition phase of designing an
ES.

Disadvantages of Semantic Networks

The disadvantages of using semantic networks to represent knowledge include:

� It can be difficult to show all the different inference situations using a network.
� They are less reliable than other knowledge representation techniques because

inferring becomes a process of searching across the diagram.
� Diagrams can become very complex.
� The wide range of possible kinds of links and the ways they might combine to

form indirect linkages, plus the large number of concepts usually included in a
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semantic network make this form of representation susceptible to a combinatorial
explosion.

� Semantic networks have difficulty associating procedural knowledge with the
facts represented by the network and, since they lack any means of bundling-
related facts into associated clusters, usually result in a proliferation of many
different concepts and linkages producing a complex representation that may
require extensive search operations to reach conclusions.

Limitations of Semantic Networks

Semantic networks as a representation of knowledge have been in use in Artificial
Intelligence for many years. Some of the earliest uses of a nodes-and-links ap-
proach were in the work of Quillian (1968) and Winston (1975), where semantic
networks were used as models of associative memory. Quillian (1968) focused on
how natural language is understood and the capturing of meaning by a machine.
Winston (1975) focused on machine learning and structural descriptions of an
environment.

Creations and uses of semantic networks have led to a number of epistemological
problems, which numerous researchers have attempted to address these problems.
Barr and Feigenbaum state that:

In semantic network representations, there is no formal semantics, no agreed-upon notion
of what a given representational structure means, as there is in logic, for instance.

Semantic networks do tend to rely upon the procedures that manipulate them.

The system is limited by the user’s understanding of the meanings of the links in
a semantic network. Links between nodes are not all alike in function or form.
We therefore need to differentiate between links that assert some relationship and
links that are structural in nature.

Summary

In this section you have learned about the role of semantic networks in knowledge
representation. In the process, you discovered the limitations of such an approach
and why semantic networks can be used as a communication tool between the
knowledge engineer and the domain expert.

Current Research Links

Semantic Research

http://www.semanticresearch.com/
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Concept Maps as Hypermedia Components

http://ksi.cpsc.ucalgary.ca/articles/ConceptMaps/CM.html#Abstract

Plumb Design Visual Thesaurus

http://www.plumbdesign.com/products/thinkmap

The Combination of Hypertext and Semantic Networks for the
Representation of Knowledge

http://www.datafoundry.com/semantic.htm

Scientific American: The Semantic Web

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21

Semantic Networks, Concept Maps, Knowledge, Knowledge Representation

http://www.ipli.com/semantic.htm

Using Semantic Networks as a Mindtool

http://www.conroe.isd.tenet.edu/educ/pub htm/Pub htm/DOCS/MINDTOOL/
SEMANTIC.HTM

Semantic and Real Networks: Does Browsing Make Sense?

http://perso.wanadoo.fr/universimmedia/nohi/enohip2.htm

Self-Assessment Question

Read the article in Scientific American about ‘The Semantic Web’ at: http://
www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21.

Comment, with examples, on the accuracy of the sentence in the first paragraph
under the heading knowledge representation that reads:

Knowledge representation, as this technology is often called, is currently in a state compa-
rable to that of hypertext before the advent of the Web: it is clearly a good idea, and some
very nice demonstrations exist, but it has not yet changed the world. It contains the seeds
of important applications, but to realise its full potential it must be linked to a single global
system.

Quote freely from the article in your answer if appropriate.



148 An Introduction to Knowledge Engineering

Answer to Self-Assessment Question

You may have referred to such characteristics of current knowledge representation
technology as:

� the limiting of the questions that can be asked in order to allow the computer to
answer reliably, or at all

� the centralisation involving the requirement to share exactly the same definition.

On the other hand, you may have noted the potential improvements claimed for
approaches incorporating XML, RDF, URIs, etc.
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SECTION 5: FRAMES

Introduction

This section provides an introduction to how knowledge can be represented in ESs
using frames.

Objectives

By the end of the section you will be able to:

� explain how frames can be used to represent knowledge
� describe how ontologies can be used to represent knowledge.

Frames

Frames are a simplified version of a semantic network where only ‘is a’ relation-
ships apply.

Frames provide a method of storing knowledge, collecting specific information
about one object in an ES. In essence they allow both data and procedures to be
included within one structure.

An example frame for a coffee mug object can be drawn as follows:

Coffee mug FRAME

IS A Mug
COLOUR
CAN HOLD LIQUID True
NUMBER OF-HANDLES Default = 1
SIZE Range: Small, Medium, Large
PURPOSE Value : drinking coffee
COST Demon (£ needed)
MATERIAL Default = pottery

Within that structure, slots (i.e., rows) can:

� store details of each data object
� provide links to other frames
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� contain procedural code, linking to other applications to obtain data or write data
� indicate whether or not certain properties of each object are needed within that

frame.

In practice, three different types of slots are used:

1. Named slots having a standard filler value of certain data items. For example,
the slot for number of wheels in a car frame will have a default value of four.
This can be overwritten where the specific type of car being described (such as
a three-wheel car) does not meet this default value. Range values can also be
specified, e.g. the size must be small, medium or large.

2. Slots showing relationships using the term IS A. For example, a car is a motor
vehicle. The IS A motor vehicle slot will therefore link the frame for car with
a frame describing the basic features of a motor vehicle.

3. Slots contain procedural code. For example, the number of miles that a car
can travel, i.e., its range, is determined by the current petrol stored in its
tank and by the engine size. The slot for range can therefore store proce-
dural code to calculate the range (if needed) based on the slots for cur-
rent petrol and engine size. This procedural code is called a demon (in this
case an if needed demon) and is activated automatically if a value for range is
needed.

Activity 20
Complete the following frame for a car based on the information provided
above. Remember that cars are available in a range of sizes and that they are
part of the overall set of motor vehicles.

Car FRAME
IS A
MANUFACTURER
CAN TRAVEL ON ROADS
NUMBER OF-WHEELS
SIZE
PETROL TANK CAPACITY
CURRENT FUEL
ENGINE SIZE
RANGE
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Feedback 20

Car FRAME
IS A Motor vehicle
MANUFACTURER
CAN TRAVEL ON ROADS True
NUMBER OF-WHEELS Default = 4
SIZE Range: Small, medium, large
PETROL TANK CAPACITY
CURENT FUEL
ENGINE SIZE
RANGE If needed: Calculate from current

fuel and engine size

Levels Within Frames

The levels of information within frames are:
� The highest level in a frame is literally FRAME, which stores the name of the

specific frame.
� Below this there are SLOTS, with each slot providing information on one of the

attributes of that frame.
� Within the slot, the FACET provides detail on each attribute. This detail may

include a value, ranges that can be applied to the attribute, default values or
calculated values including demons.

� Finally, the DATA provides specific information about each attribute, such as
the NUMBER OF WHEELS being 4 in a frame describing a motor vehicle.

Inheritance

One of the main advantages of using frames is the principle of inheritance. This
means that frames can inherit the attributes of other frames, in a hierarchical
structure. For example, a frame for a cup can provide some basic attributes in a
number of slots about that object. These attributes can be given to other objects
that share those attributes.

Figure 4.6 shows the attributes of a mug being applied to two other drinking
receptacles, namely a tea mug and a coffee mug.
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Mug FRAME

STORES

Coffee mug FRAME 

Liquid
Default = 1

IS_A 
COLOUR 
STORES
NUMBER_OF-
HANDLES
SIZE 
PURPOSE
MATERIAL 

Mug 

Tea

Range: S, M or L 
Drinking tea
Default = china

Mug 

Coffee

Range: S, M or L 
Drinking coffee
Default = pottery

IS_A
COLOUR
STORES
NUMBER_OF-
HANDLES
SIZE
PURPOSE
MATERIAL

Tea mug FRAME 

Default = 1 Default = 1

NUMBER_OF-HANDLES

FIGURE 4.6. Mug frames.

The Mug FRAME provides some detail on mugs. These slots can then be used in
the Coffee mug and Tea mug frames.

Using the idea of inheritance, the objects lower in the hierarchy automatically
inherit the contents of the corresponding slots, unless this data is overwritten, e.g.
tea mugs store tea (not just an unspecified liquid). The default value for number of
handles is inherited and not over written as most Tea mugs have one handle. This
may over written lower down the hierarchy of frames when we define a frame for
Fred’s mug. Initially in this frame the slot for NUMBER OF HANDLES would
contain an inherited default value, and therefore we may assume that Fred’s mug
has one handle. However, as the ES runs we may find out that this specific mug
is very large and has two handles—at this point the appropriate slot in this frame
would have a specific value stored in it over riding the inherited default value.

Activity 21
Use the Motor Vehicles frame (below) and the information specified to complete
a three-wheeled Car frame.

Three-wheeled cars are manufactured by ‘Smith’s’. They have 1.1 litres engines
and have a maximum speed of 100 kilometres per hour.

Motor Vehicle FRAME
CAN TRAVEL ON ROADS True
NUMBER OF-WHEELS Default = 4
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Feedback 21

Three-wheeled Car FRAME
IS A Motor Vehicle
MANUFACTURER Smith’s
CAN TRAVEL ON ROADS True (inherited from car frame)
NUMBER OF-WHEELS 3
ENGINE SIZE 1.1 litres
Maximum Speed 100 kilometres per hour

Remember that the NUMBER OF WHEELS slot does not take on the default
value in this situation but is overwritten with the new value of 3.

Advantages of Using Frames

The advantages of using frames are that they can:

� be represented in the form of a table, making the information easy to read and
assimilate.

� store default values. So where a frame has an IS A slot, that frame is linked to
another frame containing generic information for a particular group of frames.
The generic information is used to fill slots in the frame, rather than having to
enter all of these manually.

� use default values in the reasoning process. If later, the default value is found to
be incorrect, then the system can overwrite the default value and then run through
its reasoning again to see if this changes any conclusions it reached earlier. In this
way, frames can be used to mimic default reasoning, which humans often use.

� be structured hierarchically and thus allow easy classification of knowledge.
� reduce complexity by allowing a hierarchy of frames to be built up.
� clearly document information using common formats and syntax.
� combine procedural and declarative knowledge using one knowledge represen-

tation scheme.
� constrain allowed values, or allow values to be entered within a specific range.
� enable demons to be specified that when triggered perform some automatic

procedure (often used to ensure slot values are consistent).

Disadvantages of Using Frames

The disadvantages of using frames are that they:

� can be inefficient at runtime because they do not provide the most efficient
method to store data for a computer.

� can lead to ‘procedural fever’, that is the apparent requirement to focus on making
appropriate procedures rather than checking the overall structure and content of
the frames.

� require care in the design stage to ensure that suitable taxonomies, i.e., agreed
structures for the terminology are created for the system.
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Before closing this chapter, we need to look at an additional approach to storing
knowledge in a KBS, one that is of current and increasing interest and quite closely
related to frames.

Ontologies

In philosophy, the term ‘ontology’ refers to ‘a particular theory about the nature
of being or the kinds of existence’.

From a knowledge engineering perspective, the term ontology is often used as a
synonym for the terminology in some domain.

Activity 22
A number of researchers in the knowledge engineering field have suggested
the following knowledge engineering-specific definitions of ontology. Suggest
what implications these definitions have for knowledge representation.

An ontology is an explicit specification of a conceptualization (Gruber, 1994).
An (AI-) ontology is a theory of what entities can exist in the mind of a knowl-
edgeable agent (Wielinga and Schreiber, 1993).

An ontology for a body of knowledge concerning a particular task or domain,
describes a taxonomy of concepts for that task or domain that define the se-
mantic interpretation of the knowledge (Alberts, 1993).

Feedback 22
You may have been able to suggest the following implications for knowledge
engineering of the term ontology defined above:

Gruber’s definition, though not explicitly stated, suggests that an ontology is a
meta-level description of a knowledge representation.

Wielinga and Schreiber’s definition emphasises that we want to apply the notion
of ontology to all knowledgeable agents, including humans. Since different
knowledgeable agents will often have different symbol-level representations,
it is convenient to formulate ontologies at the knowledge level. Ontologies can
therefore be used as mediators between knowledge as it is understood by a
domain expert and knowledge as it is represented in a KBS.

Alberts’s definition emphasises that it is not the terminology itself that con-
stitutes the ontology but the semantic interpretation of the terms. Another im-
portant aspect of this definition is that ontologies can be specific for tasks or
for domains. That is, both the domain and the task at hand may affect the
ontology.
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Combining the above definitions results in the following definition:

Ontologies can be classified according to the amount and type of structure of the
conceptualisation and the subject of the conceptualisation. In relation to the former,
it is possible to distinguish three categories:

� Terminological ontologies, such as lexicons, specify the terms that are used to
represent knowledge in the domain.

� Information ontologies which specify the record structure of databases.
� Knowledge modelling ontologies specify conceptualisations of the knowledge

and usually have a richer internal structure than information ontologies. They
are often customised for a particular use of the knowledge they describe.

Within the context of KBS development, knowledge modelling ontologies are
the most useful. A detailed description of the use of this type of ontology
applied to electronic medical records is available at: http://www.cs.man.ac.uk/
mig/ftp/pub/papers/alr-foundations.pdf.

By creating an ontology within an ES we can define the limitations of the knowl-
edge stored and thus hope to combat brittleness.

Other Knowledge Representation Issues

When selecting a suitable knowledge representation scheme the most natural form
of representation should be aimed for. This may involve using a combination of
different techniques to provide advantages of each without the disadvantages of
any. It is possible, for example, to use within one KBS, a mixture of the rules and
frames, if both of these representation schemes are supported by the development
tool.

It is also important to work to the strengths of that knowledge representation
scheme, and understand the tools used.

Both the cost and complexity of using a combination of knowledge representation
schemes must be considered and measured against the gains in flexibility.

It is often necessary to break the problem into parts. Complexity tends to increase
with the problem size, and decomposition techniques can produce efficient KBSs.
A 2000 rule KBS will be too much for many computers to cope with. However, a
KBS which consists of 20 rule sets, each one having 100 rules can be processed
efficiently.

Appropriate planning for the knowledge representation scheme used must take
place involving the definition of the appropriate types of knowledge representation
scheme that will be used when organising the knowledge.
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Tools that best support the different representations need to be identified. If none
of the available tools provide exactly what is required, then the next best possible
choices must be evaluated. This includes identifying their strengths so that these
can be applied to the task.

A knowledge-based structure should take maximum advantage of the knowledge
representation scheme. The problem should not be conceptualised in procedural
terms as this can result in inefficient code.

No single knowledge representation method is ideally suited for all problems. As
a knowledge engineer you may be well advised to sacrifice the goal of uniformity
and explore the possible benefits of multiple knowledge representation schemes.

Current Research Links

Using Explicit Ontologies in KBS Development

htp://ksi.cpsc.ucalgary.ca/IJHCS/VH/VH1.html

Natural Language & Knowledge Representation Research Group

http://tigger.cs.uwm.edu/∼nlkrrg/

KR, Inc.

Principles of Knowledge Representation and Reasoning, Incorporated

http://www.kr.org/

Knowledge Representation Laboratory

http://kr.cs.ait.ac.th/

Self-Assessment Questions

Question 1

Represent the following facts as a set of frames, using the notation described
earlier:

‘The aorta is a particular kind of artery that has a diameter of 2.5 cm. An artery is
a kind of blood vessel. An artery always has a muscular wall, and generally has a
diameter of 0.4 cm. A vein is a kind of blood vessel, but has a fibrous wall. Blood
vessels all have tubular form and contain blood’. (With thanks to Alison Cawsey
[1998] for permission to use this question.)
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Question 2

A knowledge base is required to categorise pets and store details of appropriate
foods, environmental needs, etc. The system will then diagnose medical problems
and offer advice on the appropriate care. Which of the following three knowledge
representation methods would you use for this problem and why?

� Rules
� Frames
� Semantic networks.

Answer to Self-Assessment Questions

Answer 1

You should have four frames as follows:

BLOOD VESSEL FRAME

IS_A Blood Vessel
DIAMETER 2.5 cm
FORM Tubular
CONTAINS_B
LOOD

True

ARTERY FRAME

IS_A Blood Vessel
DIAMETER default: 0.4 cm
WALL Muscular

VEIN FRAME

IS_A Blood Vessel
WALL Fibrous

AORTA FRAME

IS_A Artery
DIAMETER 2.5 cm

Blood Vessel 

Artery Vein 

Aorta
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Note that the FORM and CONTAINS BLOOD slots can be inherited from the
BLOOD VESSEL frame and therefore do not need to be repeated in the VEIN and
ARTERY frames.

Answer 2

Semantic networks could be used for this problem but inference, i.e., the diagnosis,
would be complex. Therefore, it may be better to restrict the use of semantic
networks to the knowledge acquisition phase of the project, i.e., use them as a
communication tool between the knowledge engineer and expert. After this stage
the knowledge would be converted into another format.

Frames are much simpler being restricted to is a style relationships. Frames would
provide a good method of storing the data about the pets and it would be easy to
categorise them into suitable hierarchies, e.g. small mammals, reptiles, etc. Similar
pets could inherit data and characteristics from frames higher up in the hierarchy,
thus simplifying the data stored (food etc.). Data on pet ailments could be stored
as procedural code (demons) associated to particular slots, e.g. a cat frame could
have a slot called eating disorders and another called infections. However, encoding
this knowledge as procedural code could get messy so let us consider rules as an
alternative to frames.

With rules storing details of the pets could be complex and difficult to visualise
however defining rules to describe pet problems and the associated symptoms
would be quite easy. Thus, using rules storing details of the actual pets would be
complex but invoking inference to diagnose problems would be easy.

Perhaps the best solution would therefore be to use a combination of rules and
frames for this problem.

References

Inference, Forward and Backward Chaining
Cawsey, A. (1998). The Essence of Artificial Intelligence. Prentice-Hall: London, England.
Wolverton, M. (1995). Presenting significant information in expert system explana-

tion. In Seventh Portugese Conference on Artificial Intelligence (EPIA95), Portugal,
October 1995.

Semantic Networks
Quillian, M. (1968). Semantic memory. In Minsky, M. (editor), Semantic Information Pro-

cessing. MIT Press: Cambridge, MA, pp. 216–270.
Alberts, L. K. (May, 1993). YMIR: An Ontology for Engineering Design. Thesis, University

of Twente, Enschede, The Netherlands.
Winston, P. W. (1975). Learning Structural Descriptions from Examples, in The Psychology

of Computer Vision, Winston P. (ed.), McGraw Hill, New York, 157–209.



5
Expert System Shells, Environments
and Languages

Introduction

This chapter extends your knowledge of knowledge-based systems by providing
the opportunity for you to familiarise yourself with the tools for their development.

The chapter consists of three sections:

1. Expert system (ES) shells
2. Expert system development environments
3. Use of artificial intelligence (AI) languages.

Objectives

By the end of the chapter you will be able to:

� define and explain what an ES shell is
� explain the main elements of an ES shell and how they work
� evaluate the advantages and limitations of ES shells
� evaluate the advantages and limitations of ES development environments
� evaluate the advantages and limitations of programming languages.

159
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SECTION 1: EXPERT SYSTEM SHELLS

Introduction

This section provides a brief introduction to the use of ES shells. It begins with an
overview of the different software tools available to produce ESs, followed by a
more detailed look at ES shells.

Objectives

By the end of the section you will be able to:

� evaluate some of the commonly used ES shells.

Tools Available to Produce ESs

There are three main tools available to help with the development of ESs:

� Programming languages
� Expert system shells
� Expert system development environments.

Expert system shells provide a framework to produce an ES, so the knowledge base
and rules are simply added to this framework. Expert system shells are examined
in this section.

Expert system development environments provide a more powerful and flexible
framework within which an ES can be written. They generally allow multiple
knowledge representation schemes to be used and allow knowledge bases to be
segmented. These tools are covered in Section 2 of this chapter.

Programming languages include conventional computer languages, such as C++
and Java, as well as languages specifically designed for AI applications, these
include LISP and PROLOG. More detail on the use of languages is provided in
Section 3 of this chapter.

What Are ES Shells?

Expert system shells are the main choice for building small ESs due primarily to
their ease of use. The shell is really a ready-made ES without a knowledge base.
All the programming components are there, waiting for rules to be entered into
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Knowledge base

Problem information
Facts
Rules

Working
memory

Inference engine 

Processing unit handling the
problem information, and
then giving the results

User interface

Expert system shell

FIGURE 5.1. Expert system shell.

the system. Expert system shells therefore provide a quick way to develop an ES
without having to build the entire system from scratch.

The basic structure of an ES shell and its relationship to a knowledge base is
illustrated in Figure 5.1.

Activity 58
Based on your experience of using an ES shell suggest two possible benefits of
using such tools. What are their weaknesses? Suggest two.

Feedback 58
You should have been able to suggest some of the following. The benefits of
using an ES shell are that:
� Programming time is decreased because the basic shell of the ES has already

been produced.
� Expert system development can focus on entering knowledge into the knowl-

edge base.
� Non-programming experts can acquire a knowledge of how the shell works

without having to understand in detail how to program an ES.
� Knowledge may be entered into the system by non-programming experts,

especially where the system provides a user-friendly interface.

The weaknesses of ES shells are that:
� Shells can normally only support one knowledge base and one knowledge

representation scheme. A system with a large knowledge base can be very
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inefficient to run and difficult to maintain. In much the same way as a large
program is split into functions and procedures, it is desirable to split a large
knowledge base into several smaller knowledge bases. Shells cannot usually
support this.

� Shells usually have limited flexibility when inferencing (e.g. backward chain-
ing only) and it may be that for part of a problem forward chaining would be
ideal while for another part of the same problem backward chaining would
be ideal.

� Shells tend to be inflexible or at least difficult to modify. This means that
knowledge may not always be entered in exactly the correct format in the ES.

� The knowledge domain may be simplified within the system because the shell
cannot represent the full complexity of the domain.

� It is easy to let the shell dictate the format of the system, rather than choose
the ideal format and then find a tool that supports this format.

Domain-Specific Shells

Domain-specific shells are simply ES shells that have been written to represent
knowledge within a specific domain. For example, shells are available to assist
with the help desk, scheduling and configuration of systems. The shells provide a
specific user-interface to assist with the trapping of knowledge, but tend to be more
expensive than more general ES shells. Case-based reasoning (CBR) Express is
one example of a domain-specific shell.

Examples of ES Shells

Expert system shells include:

� Crystal
� JESS.

Crystal is an old ES shell that has the following facilities:

� a relatively simple inference engine that supports a knowledge base of rules
� facilities for creating a graphical user-interface
� a backward chaining inference engine
� automatic, but basic, explanation features
� can interface with text files, databases, spreadsheets and C code.

While Crystal is not a modern tool it was used in a variety of real world applications.
This included an ES created by a bank to assess mortgage applications.

JESS by comparison is a modern ES shell written in Java. Unlike Crystal it was not
designed for the creation of standalone ESs but is instead designed to support the
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development of hybrid intelligent information systems, i.e., systems containing
both procedural and declarative components (see Chapter 6 for more details of
hybrid intelligent information systems).

JESS was written entirely in Java and was designed in such a way that components
created by JESS can be integrated directly with procedural components, assuming
that they are also written in Java. To facilitate this JESS has the following features:

� tools for extending Eclipse, an Integrated Development Environment often used
for developing Java programs

� an inference engine that supports both forward chaining and backward chaining
� the ability to perform reasoning upon other Java objects.

JESS does not provide graphical user-interface facilities directly. However, Java
programmers already have facilities to create these and JESS programmers have
access to all of the Java API.

As systems created with JESS are written in Java this provides and easy method
of developing web-based ESs.

More details of JESS and the JESS software itself can be found on the Internet at:
http//www.herzberg.ca.sandia.gov/jess/.

Summary

This section has examined the use of ES shells as tools used in the development
of ESs.

Self-Assessment Question

Question 1

Find two ES shells on the web and contrast them.
Identify their main features.
Identify any major differences in usability between each shell.

Answers to Self-Assessment Question

Answer 1

Your answer will be very dependent upon the specific shells you find and compare.
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Much of your evaluation will represent your personal experience of the software
and you may have developed preferences for the different ways in which the two
programs approach the same task.

Generally speaking, most shells are relatively simple tools that support one knowl-
edge base using one knowledge representation scheme. Many shells also offer
additional features such as automatic explanation facilities, graphical interface de-
velopment tools and some support for integrating the system with other programs
and/or databases.
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SECTION 2: EXPERT SYSTEM
DEVELOPMENT ENVIRONMENTS

Introduction

This section provides a brief introduction to the use of ES development environ-
ments. It considers the main limitations with ES shells and looks how one industry
standard tool overcomes these limitations.

Objectives

By the end of the section you will be able to:

� evaluate the advantages and limitations of ES development environments.

Activity 59
Search the WWW and read some of the documentation for Aion BRE, a system
produced by Computer Associates. Identify the characteristics of the system
that make it an improvement over ES shells.

Feedback 59
You may have been able to recognise the following main advantages:
� supports multiple segmented knowledge bases
� allows inference engines to be tailored to each knowledge base
� supports multiple knowledge representation schemes, rules (with forward and

backward chaining)
� supports object-oriented knowledge representation (similar to frames but

more flexible)
� appropriate for the development of large systems but also much more expen-

sive, complex and more difficult to learn
� separates control and domain knowledge thus supporting knowledge base

reuse (discussed in Chapter 6).

Expert system development environments are in many ways similar to ES shells.
However, as we have seen, while still specifically designed to support the devel-
opment of ESs, they are much more flexible than ES shells.

In particular, they allow larger ESs to be developed in a structured way and they
offer much more flexibility in the way knowledge is represented.
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They also allow the separation of control and domain knowledge. This is an im-
portant issue that enables knowledge reuse.

The advantages that ES development environments offer when compared with
ES shells will become much more apparent when you work your way through
Chapter 6. This explains current thinking with regard to life cycles and method-
ologies used when developing ESs. You will see that segmented knowledge bases
and the separation of control and domain knowledge are important concepts that
are supported by modern ES development environments such as Aion BRE.

In Chapter 6, you will see how Aion BRE has facilities required by current method-
ologies and can be used to develop a larger well-structured application.

Expert system development environments do however have one particular disad-
vantage when compared with ES shells. As they are more flexible, they are also
larger, more costly and more complex to learn. Therefore when choosing a tool
to develop an ES a sensible rule would be to ‘use a shell where you can and an
environment where you should’.

Summary

This section has provided an introduction to the use of ES development environ-
ments and you have had the opportunity to review one modern industry standard
tool.

Self-Assessment Question

Question 1

You have been asked to develop a small web-based ES to advise prospective
students of appropriate courses at a university.

Consider each of the following types of tool and select the most appropriate for
this problem:

� An ES shell
� A knowledge-based system (KBS) development environment (e.g. Aion BRE)
� A conventional programming language (e.g. C++ or Java).

Answers to Self-Assessment Question

Answer 1

This problem is quite small and this would indicate the use of a shell (e.g. Crys-
tal). However, this can significantly restrict the knowledge representation scheme
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allowed and if the shell does not support the knowledge representation method
most suitable for this problem (e.g. frames) we may be forced to consider a more
flexible tool such as KBS environment (e.g. Aion BRE). Furthermore, not all shells
would allow the system to be integrated with the WWW (though JESS will).

If a more flexible knowledge base were required we may need to consider the
use of an AI language (e.g. PROLOG) see next section. However, nothing in the
problem suggests that such flexibility is required.

The use of a conventional programming language would be most costly of all as it
has no inbuilt inference capabilities and thus the inference engine would need to be
programmed from scratch. This is the most flexible of all options but should only
be considered if all other options are deemed inappropriate. The use of a procedural
programming language would at least allow the system to be very easily integrated
on to the web.
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SECTION 3: USE OF AI LANGUAGES

Introduction

This introduces PROLOG, a programming language not specifically designed for
the development of ESs but one designed for the creation of many AI applications.

Objectives

By the end of this section you will be able to:

� evaluate the advantages and limitations of programming languages for the de-
velopment of ESs.

Expert System Languages

There are two main classes of languages, procedural and declarative.

Procedural languages include C++ and Java. These are relatively general-purpose
languages that can be used in many different programming situations, e.g. expert
systems, Microsoft Windows programs and company-specific applications. They
are organised as a set of procedures, very similar to the way that a chapter in a book
is divided into a series of paragraphs. While they offer no specific support for the
development of ESs they do offer the ultimate in flexibility. As such languages such
as these can be used to develop systems where other tools may be inadequate. For
example, the development of a hybrid expert/neural network system may require
this level of flexibility. However, this choice of tool should be a last resort as they
offer no specific support for the development of ESs.

On the other hand, the declarative programming language PROLOG is specifically
designed for programming AI systems from scratch and can be used to develop
ESs. When developing ESs, PROLOG offers even more flexibility than an ES de-
velopment environment. However, it has limited inbuilt facilities, i.e., less specific
support for the development of ESs. Thus developing an ES using PROLOG will
take considerably longer than if shell or environment was used as required features
need to be programmed. Thus there is a trade off between flexibility of tool and
lack of specific support.

The following tools are placed in increasing order of flexibility. They are also in
order of increasing complexity and hence development time:

� Shells
� Development environments
� AI languages
� Procedural languages.
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When choosing between these options you should use a shell where you can and
an environment where you should and a language only if you must.

An Introduction to PROLOG

This chapter now introduces you to the PROLOG programming language.

Programs written in declarative languages include a set of declarations about a
specific field of knowledge. Using this declaration, the ES can determine the truth
of a statement as well as work out solutions to problems.

Most ES languages, including PROLOG, give knowledge to an ES in the form of
facts.

PROLOG programs are made from terms, which can be either:

� A constant is a single entity (like zebra, ‘John’) or a non-negative integer (like
24)

� A variable is a series of letters that begins with a capital letter (like John). Note:
constants cannot begin with a capital letter unless they are enclosed in quotes.

� A structure is a predicate with zero or more arguments, written in functional
notation. For example,

animal(zebra).
speaks(boris, russian).

A fact is a term followed by a period (.). A rule is a term followed by :- and a
series of terms (term1, term2, . . . , termN) separated by commas and ended by a
period (.). That is, rules have the following form:

term :- term1, term2, ..., termN.

A PROLOG program is a series of facts and rules:

speaks(boris, russian).
speaks(john, english).
speaks(mary, russian).
speaks(mary, english).

understands(Person1, Person2) :-
speaks(Person1, L), speaks(Person2, L).

This program can be translated into the following English facts:
� Boris speaks Russian.
� John speaks English.
� Mary speaks Russian.
� Mary speaks English.
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and the following rule . . .

� Two people can understand each other if they both speak the same language.

A fact in English may be written as:

The expert system monitors the ventilator.

This fact contains two important components:

� a relationship or predicate in the PROLOG language. In this example, the pred-
icate is monitor.

� objects or arguments in PROLOG (objects are normally people, things or other
items being acted on by the predicates). In this example, the objects are expert
system and ventilator.

In PROLOG, the fact would be expressed (all in lower case) as:

monitors(expert-system,ventilator).

In other words, the activity is placed at the beginning of the fact. The people or
objects affected by the activity appear inside the brackets, normally with the person
first, followed by any collective noun (e.g. class of pupils) or names of objects.
Note also that the syntax demands full stops at the end.

PROLOG uses various symbols.

Symbol Meaning

, And
; Or
:- If

Activity 60
Express the following facts in PROLOG
1. A person travels on a train.
2. The teacher instructs the class.
3. John drives a car.
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Feedback 60
1. travels(person,train).
2. instructs(teacher,class).
3. drives(john,car).

Note that in all situations the activity is placed before the brackets, which
contain the objects/arguments affected by the activity/predicate.

While the order of arguments within the brackets have no significance within
PROLOG, the order must be used consistently. For example, writing ‘the doctor
treats the patient’ should always be written as:

treats(doctor,patient).

Rather than sometimes as:

treats(doctor,patient).

and at other times as:

treats(patient,doctor).

Expressing Facts in ESs

Facts can be expressed in ESs using the same format as the action statements
above. For example, the fact my surname is Smith can be expressed as

surname(smith)

Activity 61
Explain the meaning of these statements in PROLOG
1. age(fred, 56).
2. value(pH,7.27).

Feedback 61

PROLOG statement Meaning
age(fred,56). Fred is 56.
value(pH,7.27). The pH value is 7.27.
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Using Facts in ESs

Given a set of facts, an ES can review those facts to determine if any apply in a given
situation. For example, a system can be provided with the following set of facts.

Fact PROLOG statement

Fred is male male(fred).
Tina is female Female(tina).
Susan is female Female(susan).
Fred is on a ventilator ventilator(fred).
Susan is on a ventilator ventilator(susan).

Queries can be given to PROLOG in the format:

? - ventilator(fred).

In other words, please find out if Fred is on a ventilator. The ES then searches the
knowledge base to see if this fact is known and a suitable response is provided.

Notice that these statements are different from those statements indicating a re-
lationship between different objectives. In this situation, the statements simply
express facts. Also, where there is more than one object within a class, such as
female in this situation, then the overall class name appears outside of the brackets,
with the class example (the name) inside of the bracket. Using this format means
that a search can be made for a specific object name, such as female, and then all
items matching that search will be quickly identified.

Figure 5.2 shows the ES answering the queries:

Is Fred on a
ventilator ?

Is Tina on a
ventilator ?

?- ventilator(fred).

?- ventilator(tina).

The query is 
entered in

Prolog format

Prolog then exami
the knowledge ba
for facts which m

the question

Yes

No

You can then use
query mode to ask
Prolog questions
about patients.

FIGURE 5.2. Querying an expert system.
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? - ventilator(fred).

and

? - ventilator(tina).

Activity 62
Produce PROLOG statements for the facts listed below.

Remember that the person owning an object will normally appear inside of the
brackets, with the object being owned appearing outside the brackets.

Fact PROLOG statement
Bill is male
Linda is female
Peter is male
Bill has a single ticket
Linda has a return ticket

What PROLOG query would you use to determine whether Bill has a return
ticket?

Feedback 62

Fact PROLOG statement
Bill is male male(bill).
Linda is female female(linda).
Peter is male male(peter).
Bill has a single ticket single-ticket(bill).
Linda has a return ticket return-ticket(linda).

You should also have been able to construct the following to query whether
Bill has a return ticket:

? - return-ticket(bill).

Extracting a Set of Records from an ES

The question structure within PROLOG can be used to identify and extract a set
of related facts from the total of all facts given to PROLOG. A variable is placed
where a query is to be made about the facts, PROLOG then searches through the
facts and returns any matches.

For example, we may need to find out which patients are female from the set of
facts concerning patients used above. The PROLOG statement will be written as:

? - female(Patient).
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The initial capital letter in ‘Patient’ indicates that it is a variable; all variables must
begin with an uppercase letter.

Activity 63
Using the information concerning train tickets from the last exercise, write a
PROLOG query that will find people holding a return ticket.

Feedback 63

? - return-ticket(Customer).

You may use a different noun to Customer. This is fine, as long as it describes
the person travelling on the train (and uses a capital letter). Other possible
examples could be Traveller, Commuter, etc.

Combining Queries

In some situations, it will be necessary to extract records from two sets of different
facts using PROLOG.

For example, names of some males and respiratory conditions are stored in the
following facts.

male(tim).
male(marc).
male(simon).
resp(tim,acute).
resp(marc,medium).
resp(simon,acute).

A match will be generated from this set of facts to the query male(X) where X is
an instance of male. A match will also be generated from this set of facts to the
query resp(X,Y) if the patient X has a respiratory condition of the state Y.

However, a reasonable question to ask the ES is:

‘Do any male patients have an acute respiratory condition?’

Or in PROLOG format:

? - male(X),resp(X,acute)

Literally, is there an X who is male and has a respiratory condition that is acute?
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Given the facts above, a solution cannot be found directly because the gender male
is not linked to the respiratory condition facts. Therefore, PROLOG will have to
check the two sub-goals and match the results from these before the query can be
answered.

Activity 64
Given the PROLOG facts below, write a query that asks PROLOG to search
for any female who has a return ticket.

Facts one Facts two
male(fred). single-ticket(bill).
female(linda). return-ticket(peter).
male(peter). return-ticket(linda).
male(nigel). single-ticket(john).
female(jayne). single-ticket(nigel).

Feedback 64
Your query should be as follows:

? - female(X),return-ticket(X).

Inferences

The principle of inference has already been discussed. PROLOG can perform
backward-chaining inference from facts provided to it. For example, the following
clause can be used to determine whether or not two people can marry.

can_marry (X, Y) :-
male (X),
female (Y),
not_married (X),
not_married (Y).

From this information PROLOG can determine that two people can marry if X is
male and Y is female, and if neither person is already married.

Activity 65
Examine the PROLOG program listing below, and the following goals:

suspect(X). Who is a suspect?
find-motive(X,M). Who had a motive?
killer(X). Who was the killer?
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By working through the logic on paper try to list the suspects, those with a
motive and finally find the killer.

PROLOG Program

/* Adapted from a program created by the Prolog Develop-
ment Center the makers of Visual Prolog */

person(bert,55,m,carpenter).
person(allan,25,m,football-player).
person(allan,25,m,butcher).
person(john,25,m,pickpocket).
person(barbara,39,f,doctor).

had-affair(barbara,john).
had-affair(barbara,allan).
had-affair(susan,john).
had-affair(susan,bert).

killed-with(susan,club).
killed(susan).

smeared-in(bert, blood).
smeared-in(susan, blood).
smeared-in(allan, mud).
smeared-in(john, chocolate).
smeared-in(barbara, blood).

owns(bert,wooden-leg).
owns(john,pistol).

/* Background knowledge */
operates-identically(wooden-leg, club).
operates-identically(bar, club).
operates-identically(pair-of-scissors, knife).
operates-identically(football-boot, club).

owns-probably(X,football-boot):-
person(X,-,-,football-player).

owns-probably(X,pair-of-scissors):-
person(X,-,-,hairdresser).

owns-probably(X,Object):-
owns(X,Object).

/* Suspect all those who owned a weapon with which Susan
could have been killed * /
suspect(X):-

killed-with (susan,Weapon),
operates- identically(Object,Weapon),
owns-probably(X,Object).
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/* Men who have had an affair with Susan have a motive
'jealousy'. */

find-motive(X,jealousy):-
person(X,-,m,-),
had-affair(susan,X).

/* Females who have had an affair with someone that Susan
knew also have a motive. */
find-motive(X,jealousy):-

person(X,-,f,-),
had-affair(X,Man),
had-affair(susan,Man).

/* Pickpockets have a motive 'money'.*/
find-motive(X,money):-

person(X,-,-,pickpocket).

/* How to work out the killer */
killer(Killer):-

person(Killer,-,-,-),
killed(Killed),
not(Killed= Killer), /* i.e., Not suicide */
suspect(Killer),
find-motive(Killer,-),
smeared-in(Killer,Goo),
smeared-in(Killed,Goo).

Feedback 65
This is an exercise in backtracking, not a test of your ability to solve murder
mysteries.

The suspects are Bert and Allan.

The following people had a motive:
� Bert (jealousy)
� John (jealousy)
� Barbara (jealousy)
� John (jealousy).

Bert is guilty because he is a suspect, has a motive and is smeared in the same
stuff as the victim.

Working with Lists

PROLOG provides a mechanism for working with lists – its main mechanism for
handling large quantities of data.
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A list can be broken down into two parts: Its head, i.e., the first element and its tail,
i.e., the rest of the list after the first element has been removed (this may be empty).

For example, in the list [fred, albert, jim], the head is the element
‘fred’ and the tail is the list [albert,jim].

Activity 66
Identify the head and tail of the following lists:
[alice,tim,bert]
[alice,tim]
[alan]
[ ]

Feedback 66

List Head Tail Explanation

[alice,tim,bert] Alice [tim,bert]
[alice,tim] Alice [tim] Note: here the head is a

single item but the tail is
a list. It only has one
element in it but is
nonetheless a list.

[alan] Alan [ ] Here the tail is an empty
list.

[ ] Fail This will fail because the
PROLOG cannot assign a
value to the head.

When a list is matched to notation in the form [X|Y], X is instantiated to (given
the value of) the head and Y is instantiated to the tail.

Activity 67
Assuming the following, very short, program is entered . . .

letters([a,b,c,d]).

What would be the result of the following goal?

letters([H|T]).
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Feedback 67
The result of the above will be true (or Yes) when H is ‘a’ and T is [b,c,d].

The program in the next activity displays each element of a list. It takes the first
element from the front of a list, prints out this element and then calls the function
print (i.e., itself) to display the rest of the list.

In other words

� to print the list [a,b,c] means print ‘a’ and then print the list [b,c].
� to print the list [b,c] means print ‘b’ and then print the list [c].
� to print the list [c] means print ‘c’ and then print the list [].

Thus a function call to print the list [a,b,c] will cause ‘a’ to be printed and then ‘b’
and finally ‘c’.

When a function uses itself, as the print function does in Program 3, then this is
called recursive programming. It is unusual, complex for beginners but nonetheless
a powerful mechanism.

Activity 68
Read through the following program carefully. Try to follow its logic.

print([X|Y]) :-
write(X), /* write is a function to print out a value*/
nl, /* nl prints a new line */
print(Y).

What would this program do with the following goal?

print ([a,b,c,d,e]).

Feedback 68
The program will print out the following

a
b
c
d
e
f
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A More Complex PROLOG Program

Imagine a member function, which has two parameters, an element (an item we
are looking for) and a list (in which we are looking for it).

Given such a function an example goal might be:

member(sunderland,[newcastle,durham,sunderland,middlesbroug-
h]).

This member function could be written as follows:

member(X,[X|-]).
member(X,[-|Y]) :- member(X,Y).

The first line of the member function splits the list into two parts and says that if
the element has the same value as the head of the list then, irrespective of the rest
of the list, that element is a member of the list.

In other words given the element ‘fred’ and the list ‘[fred,bert,jim]’ fred is a
member of the list.

The second line of the member function says that, after failing the first test of
membership, the list should be split into two parts and we must now check to see
if the element is a member of the remaining section of the list. The head is of no
concern because we have already determined that the element is not the same as
the head of the list.

For example, given the element ‘fred’ and the list ‘[bert,jim,fred]’ as fred is not
the first element in the list we must check the rest of the list, i.e., [jim,fred]. If
‘fred’ is a member of this shorter list then it must also be a member of the original
list.

Summary

This section has provided an overview of how the PROLOG programming language
uses rules to make decisions and uses lists as a method of storing data.

Self-Assessment Questions

Question 1

Given the following PROLOG facts, write a query to search for any male who has
a single ticket.
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Facts one Facts two

male(fred) ticket(bill,single)
female(linda) ticket(peter,return)
male(peter) ticket(linda,return)
male(nigel) ticket(john,single)
female(jayne) ticket(nigel,single)

Question 2

You have been asked to develop an online university admission system that offers
intelligent advice and makes automatic course offers. The system will have a web
front end and contain an ES to advise prospective students of appropriate courses at
a university. The system will make actual course offers (subject to confirmation of
results) to prospective students. The web-based KBS system is to be integrated with
a University admissions database system so that prospective overseas applicants
gain advice and where appropriate make an automatic application. It has also been
decided that the system should contain an ES integrated with a CBR system. The
system will only make offers if both the ES and the CBR agree that an offer should
be made.

Consider each of the following types of tool and select the most appropriate for
this problem:

� An ES shell
� A KBS development environment (e.g. Aion BRE)
� An AI language (e.g. PROLOG)
� A conventional programming language (e.g. C++ or Java).

Answer to Self-Assessment Questions

Answer 1

Your query should be as follows:

? - male(X),ticket(X,single)

Answer 2

The system specified is very complex containing an ES integrated with a web-
based information system, a CBR system and a conventional information system.
If this entire system were to be developed using one tool then it requires a flexible
solution, certainly most shells would not be appropriate nor would PROLOG.

PROLOG does not have the facilities to develop the web front end or the CBR
system though it could be used to develop the knowledge-based component and
this could be integrated with components created with other software. The use of
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PROLOG would allow more flexibility for developing the ES component. How-
ever, nothing in the problem suggests that such flexibility is required.

A conventional programming language could be used to develop the entire system
but would not contain any tools to support the ES component, thus everything
would need to be developed from scratch and this would be costly and take time.

Aion BRE would support the ES component and, as it is a full OO (Object Ori-
ented) programming development tool, it could also be used to develop the other
components. Thus if one tool had to be chosen this would be the best choice. How-
ever, in the real world an application such as this would be developed in separate
components using a range of tools. Thus Aion BRE could be used to develop the
ES component, a visual programming environment could be used to develop the
web-based front end, a CBR tool could be used to develop the CBR component and
a procedural programming tool could be used to develop the database/information
system. These separate components would then be integrated to form one complete
system.



6
Life Cycles and Methodologies

Introduction

In this chapter we will be looking at life cycles and methodologies designed to sup-
port the development of knowledge-based systems (KBSs). We will be revisiting
prototyping, which you have probably encountered before.

There are also three specific methodologies designed to overcome some of the
problems associated with designing KBSs:

� Blackboard architectures, a method for structuring large-scale KBSs.
� Problem-solving methods (PSMs)—of which KADS (knowledge-acquisition

design system) is an important example.
� The Hybrid methodology (HyM) designed to support the development of hybrid

information systems, i.e., the integration of KBSs with traditional information
systems.

The chapter consists of six sections:

1. Need for methodologies
2. Blackboard architectures
3. Problem Solving Methods (PSMs)
4. Knowledge Acquisition Design System (KADS)
5. The Hybrid Methodology (HyM)
6. Building a well-structured application using Aion BRE.

Objectives

By the end of the chapter you will be able to:

� explain the advantages and disadvantages of using conventional methodologies
� evaluate the place of blackboard architectures in knowledge engineering

183
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� evaluate the use of control and domain knowledge within expert systems (ESs)
� evaluate the advantages and limitations of using PSMs
� describe the KADS
� evaluate the place of HyM in knowledge engineering
� describe how a well-structured application can be implemented using an industry

standard tool
� describe the current areas of methodology research.
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SECTION 1: THE NEED FOR METHODOLOGIES

Introduction

This section provides an overview of the common aspects of the different method-
ologies discussed in the later sections.

Objectives

By the end of the section you will be able to:

� Explain the advantages and disadvantages with using conventional methodolo-
gies.

Problems with Conventional Life Cycles

Traditional information systems usually perform some clearly definable pro-
cessing tasks, and may have requirements that are relatively clear—though this
does not preclude the possible need to developing throwaway prototypes as
part of the requirement analysis phase in order to determine these require-
ments.

Such systems are often created using the classic waterfall approach to software
development. This follows a six-stage life cycle of:

1. analysis
2. design
3. implementation
4. validation
5. installation
6. maintenance.

While these steps provide a useful structure for a traditional software development
project, they can be problematic—particularly when applied to the development
of a KBS. These issues are discussed in more detail below. Prior to this discussion,
attempt Activity 1.
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Activity 1
Given the stages in traditional information system design noted above, what
might be the principle activities carried out within each stage of a specifically
KBS development?

Stage System Principal activities

1 Feasibility study
2 Knowledge acquisition
3 Design
4 Implementation
5 Validation
6 Maintenance

Feedback 1

Stage System Principal activities
1 Feasibility study Checking whether or not it is feasible to write

and implement an ES. Feasibility may mean
looking at whether or not the ES will be ac-
cepted socially as well as whether sufficient
resources are available to develop the system
in the first place. Economic feasibility will re-
quire that the knowledge to be built into the
system is relatively scarce and also relatively
stable.

2 Knowledge acquisition The knowledge to be input into the ES is col-
lected from human experts.

3 Design The ES is designed. The initial design will
show the logical structure of the system; this
structure will then be used to write an appro-
priate ES using rules or frames or both.

4 Implementation Writing the system is completed and it is im-
plemented, normally on a test basis.

5 Validation The logic within the system is tested, possi-
bly by providing the system with a series of
problems where the output is known in ad-
vance. A check is made to ensure that the
system provides the same or better outputs
than those devised by human experts.

6 Maintenance The system is maintained by expanding the
rule or frames as new knowledge becomes
available or old rules become out-of-date or
are updated by new information.
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The waterfall model of software development provides a well-structured life cycle
that has on occasion worked well for the development of procedural information
systems however it has one very significant weakness. For the waterfall model to
work a clear and detailed set of user requirements must be obtainable during the
analysis stage.

Problems with Project Specification

In the development of KBSs, unlike other types of information systems, the end
goals are often not clearly defined. In particular, it is difficult to specify the knowl-
edge that the ES must contain. For this reason the waterfall model is inappropriate
for the development of KBSs.

Use of Prototyping

One of the main problems with designing ESs is the lack of any firm goals. Expert
systems are primarily concerned with the capturing and processing of abstract
knowledge. The knowledge domain as well as the activities involved in knowledge
acquisition and processing will not be clearly defined, so the actual outputs from
the system will be difficult to determine. In a conventional system, outputs can be
stated precisely because inputs and processing activities can be clearly explained.

Even when the outcomes can be defined it is difficult to specify both the knowledge
that is to be included within an expert system and the quality of the reasoning
processes it requires. If these cannot be defined, then it is impossible to define
specifications that the design and implementation can be assessed against. For this
reason, the waterfall life cycle is problematic when developing any expert system.
Prototyping, on the other hand, has an iterative life cycle that allows specifications
to be clarified as throughout the lifetime of the project.

Capturing knowledge for KBSs can also be difficult, because detail of the knowl-
edge to be encoded into the system may have to be checked with the human expert
a number of times. This does not represent a weakness in system design, but simply
shows that additional care is needed in checking the accuracy of any KBS design
compared to a conventional system. In KBS terms, this checking of the logical
system design is most often done by prototyping.

The prototype is therefore used to check user requirements by providing a mock-up
of the knowledge within the system (see Figure 6.1).

This iterative approach has four key stages, which are repeated as necessary:
� preliminary requirements are identified
� a design phase is performed
� a prototype is implemented
� the prototype is evaluated.
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FIGURE 6.1. An incremental prototyping approach for large or complex systems.

This leads to the design and development of a larger system.

Having obtained requirements from the users and performed some knowledge ac-
quisition the rules are implemented in a prototype. The accuracy of the prototype is
checked or evaluated by users, and a new prototype produced based on the expert’s
opinions and suggestions. This process continues until the prototype accurately
represents user requirements. The initial prototype therefore evolves into the final
system.

This life cycle is particularly suited to KBSs. Knowledge-based systems can be
very difficult to define even if the task they are required to perform is clear. It is
difficult to define when the knowledge they contain is complete, and when the
reasoning is up to the required standard. The availability of a cyclical iterative
process is therefore extremely useful as it allows the quality of the reasoning
process to be inspected and approved even when it was not possible to specify.

Activity 2
On the basis of your previous knowledge of prototyping, suggest what the
advantages of this approach would be for the development of KBSs specifically
in relation to:
� the accuracy of the knowledge base
� the quality of the reasoning applied to rule construction
� the involvement of users.
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Feedback 2
You should have been able to suggest the following advantages:
� Allows the accuracy of the knowledge base to be demonstrated during itera-

tions of the life cycle. Any errors or inaccuracies within the knowledge base
should be identified as the prototype shows the use and relationship between
different rules.

� The quality of the reasoning is open to inspection. The detail of the knowledge
base can be checked prior to detailed programming; again, any errors or
inaccuracies should be identified.

� It provides an easy mechanism to involve the users, management and ex-
perts. All parties involved with the design and development of the ES can be
involved in the checking of the system.

� Involvement of management, experts and users is an important part of
convincing sceptics and gaining acceptance for the system.

Such an approach also allows the project to be signed off as complete. When
the prototype is complete, then this should represent the final version of the rule
or case base within the system, hence later signoff will be more of a formality
than a detailed check.

Limitations of Iterative Processing

The main limitations of iterative prototyping include:

� The ability to develop small projects does not always mean that it is possible to
develop and maintain large real-world versions.

� The difficulty in defining the costs and timetables. The number of iterations of
the prototype will not be clear. This may result in high costs and development
taking longer than expected as additional iterations are carried out.

Clearly, we need to overcome some of these problems.

Problems with Project Management (Users/Timescale)

As the development of a KBS is based on knowledge and human reasoning rather
performing numerical calculations, management and users may be sceptical of
the system. Prototyping provides a mechanism for involving such people in the
project and overcoming their doubts; however, the iterative nature of the life cycle
can itself cause additional problems as the number of required iterations, and thus
the final cost/timescale, cannot be defined.
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Need for Segmented Knowledge Bases and Control
over Inference Process

Within a simple ES or KBS, the inference engine is separated from the knowledge
base. The reason for doing this is to allow the inference engine to be reused for
new problems.

However, this approach has limitations.

� Control knowledge is implicitly mixed with domain knowledge; this issue is
discussed in more detail later.

� The representation of the knowledge is limited by what one inference engine
understands.

� Large KBSs can be difficult to maintain. Normally, a problem can often be broken
down into smaller problems, and these smaller problems may require a range of
knowledge representation schemes. This will not be possible with one particular
inference engine.

� Finally, large KBSs can be very inefficient when searching for the knowledge
to be applied to a current problem, and thus the knowledge base needs to be
segmented.

To overcome these problems we need methods that provide structure to a knowl-
edge base, and to allow a range of knowledge representation schemes to be applied
to different stages of a problem. Methods of providing this structure, including the
use of blackboard architectures, are described in this chapter.

Self-Assessment Questions

Question 1

Consider the limitations of the waterfall and prototyping life cycles and justify the
need for a methodology when developing large-scale KBSs.

Question 2

Consider any other software development methodologies you are familiar with
and evaluate whether or not these can be used to develop ESs.

Answer to Self-Assessment Questions

Answer 1

The waterfall model of software development provides a well-structured life cycle;
however, this model is inappropriate for the development of large KBSs and the
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use of prototyping is required in order to identify the knowledge required within
the system. However, prototyping does not solve all of the issues. In particular:

� the final cost/timescale, cannot be defined
� large KBSs can be difficult to maintain
� large KBSs can be very inefficient.

To overcome these problems we need methodologies that support the development
of structured and segmented knowledge bases.

Answer 2

Other system development methodologies that can be used to develop commercial
systems include:

� Structured systems analysis and design methodology (SSADM)
� The spiral model
� The ‘b’ model.

Information about these systems can be found in many different analysis texts.

Structured systems analysis and design methodology is less suited to ES devel-
opment than conventional information systems because, for example, it does not
recognise the additional difficulties in relation to defining user requirements faced
by knowledge engineers when building an ES.

Both the spiral and ‘b’ models could incorporate knowledge engineering. The ‘b’
model may be particularly suitable, with the emphasis on testing and evaluation at
the end of the model.

Details of these methodologies can be found in various places including the www.
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SECTION 2: BLACKBOARD ARCHITECTURES

Introduction

This section provides an introduction to the use of blackboard architectures in
knowledge engineering.

Objectives

By the end of the section you will be able to:

� evaluate the place of blackboard architectures in knowledge engineering
� recognise appropriate contexts for the application of the blackboard architecture.

Introduction to Methodologies

Three different methodologies are explained in this chapter. These are:

� Blackboard architectures
� KADS
� HyM.

All three methodologies use a similar structure or set of techniques to build an ES.
They are, therefore, related to each other at the structural (macro) level, although
there are differences in approach at the detailed (micro) level.

The Blackboard Metaphor

Blackboard architectures provide a problem-solving model for organising knowl-
edge. They operate in a similar manner to a group of people working together to
solve a problem, where the results of their discussion are placed upon the black-
board for all of them to see.

The basic structure of a blackboard system is shown in Figure 6.2.

Example of Real Blackboard System in Use

Expert systems generally work best in small, narrowly defined domains of ex-
pertise. What if several such ESs were arranged to work cooperatively (just as
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FIGURE 6.2. Blackboard system architecture.

human experts from different specialisms do) so that they could solve problems in
a combination of these areas? This is the idea behind blackboard architectures.

In the HEARSAY project an early blackboard system—a computer was connected
to a library catalogue in order to be able to answer spoken enquires about the
library’s stock such as:

� What has John Smith written since 1974?
� Which of his reports are on computing?
� List these reports.

It is not easy to program a machine to understand such spoken queries because
language is very complex and might be considered to consist of the following
‘layers’:

� Phonetic—turning sound waves into word components, e.g. boy, s.
� Morphemic—connecting word components together to form other words, e.g.

boy + s = boys.
� Syntactic—ordering the words according to the grammar of a particular lan-

guage. For example, ‘Fast ran the athlete.’ is an inappropriate ordering of ‘The
athlete ran fast’.

� Semantic—the meaning from the words, e.g. ‘Blue dreams eat noisily.’ has words
in the right order but the sentence is meaningless.

� Textual—structure: connecting sentences to make paragraphs and whole texts.

It would be extremely difficult to write a single ES that coped with all of these
problems. The designers of HEARSAY in fact wrote five separate ESs—one for
each separate ‘layer’ of language and got them to cooperate via a blackboard.

The actual input to the system is the spectrogram showing the variation of energy in
different frequency bands of the spoken input as it varies over time. HEARSAY re-
places the speech stream at the lowest level of its blackboard (multi-level database,
indexed by time flowing from left to right) with a set of time-located hypotheses
as to what phonemes might be present, with confidence levels associated with the
evidence for such phonemes in the spectrogram. This relation between fragments of
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FIGURE 6.3. The HEARSAY blackboard system.

the spectrogram and possible phonemes is mediated by a processor called a knowl-
edge source (KS) which consists of a small KB with its own inference engine. A
second KS hypothesises words consistent with phoneme sequences and computes
their confidence values in turn. A third KS applies syntactic knowledge to group
such words into phrases. In addition to these bottom-up processes, KSs may also act
top-down, e.g. by trying to complete a phrase in which a verb has been recognised
as plural by seeking evidence for a missing ‘s’ at the end of a noun which precedes
it. As the result of such processing, an overall interpretation of the utterance—
both of the words that constitute it and their syntactical relationship—may emerge
with a confidence level significantly higher than that of other interpretations (see
Figure 6.3).

Activity 3
This activity will help you understand the processes associated with a black-
board system.

Imagine the following:
� A group of human experts are seated in a semicircle around a blackboard (the

more old-fashioned version of ‘whiteboards’, i.e., large surfaces on which
writing and drawing can be displayed for lecture purposes).

� Each expert is a specialist in an area relevant to the problem.
� When an expert thinks they have a contribution to make, they add their ideas,

calculations and suggestions, etc. to the board.
� The new information, result, conclusion may enable another expert to make

a contribution.
� The process continues until the problem is solved.

Suggest one main reason why there might be problems managing the process.
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Feedback 3
You should have been able to suggest that managing such a process would
require:
� a protocol for scheduling which expert can contribute if two attempt to do so

at the same time
� an agreement about terminology, language, modelling frameworks, etc.

HEARSAY also provides scheduling whereby the activity of processes and their
interaction through the blackboard database is controlled. Each process (KS) is
viewed as an agent that embodies some area of knowledge, and can take ac-
tion based on that knowledge. Some KSs are grouped as computational entities
called modules in the final version of the HEARSAY-II system. The KSs within
a module share working storage and computational routines which are common
to the procedural computations of the grouped KSs. HEARSAY is based on the
‘hypothesize-and-test’ paradigm which views solution-finding as an iterative pro-
cess, with each iteration involving the creation of a hypothesis about some aspect
of the problem and a test of the plausibility of the hypothesis. Each step rests on a
priori knowledge of the problem, as well as on previously generated hypotheses.
The process terminates when the best consistent hypothesis is generated satisfying
the requirements of an overall solution.

Though the KSs cooperate via the blackboard in an iterative formation of hy-
potheses, no KS ‘knows’ what or how many other KSs exist. This ignorance is
maintained to achieve a completely modular KS structure that enhances the ability
to test various representations of a KS as well as possible interactions of different
combinations of KSs.

At any one time the blackboard contains all current hypotheses. Each hypothesis
has an associated set of attributes, some optional, others required. Several of the
required attributes are:

� the name of the hypothesis and its level
� an estimate of its time interval relative to the time span of the entire utterance
� information about its structural relationships with other hypotheses
� validity ratings.

The task of the system is therefore essentially a search problem where the search
space is the set of all possible networks of hypotheses that sufficiently span the
time interval of the utterance, connecting hypotheses directly derived from the
acoustic input to those that describe the semantic content of the utterance. No
KS can single-handedly generate an entire network to provide the element of the
search space. Instead, the KSs cooperate to provide hypotheses for the network
that provides an acceptable interpretation of the acoustic data. Each KS may read
data, add, delete, or modify hypotheses, and attribute values of hypotheses on the
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blackboard. It may also establish or modify explicit structural relations among
hypotheses. The generation and modification of hypotheses on the blackboard is
the exclusive means of communication between KSs.

Each KS includes both a precondition and a procedure. When the precondition
detects a configuration of hypotheses to which the KSs knowledge can be applied,
it invokes the KS procedure, that is, it schedules a blackboard-modifying operation
by the KS. The scheduling does not imply that the KS will be activated at that time,
or that the KS will indeed be activated with this particular triggering precondition,
because HEARSAY uses a ‘focus of attention’ mechanism to stop the KSs from
forming an unworkably large number of hypotheses. The blackboard modifications
may trigger further KS activity—acting on hypotheses both at different levels and
at different times.

Changes in validity ratings reflecting creation and modification of hypotheses are
propagated automatically throughout the blackboard by a rating policy module
called RPOL. As mentioned earlier, the actual activation of the KSs occurs under
control of an external scheduler that constrains KS activation by functionally as-
sessing the current state of the blackboard with respect to the solution space and
the set of KS invocations that have been triggered by KS preconditions. The KS
most highly rated by the scheduler is the one that is next activated.

The Purpose of Blackboard Architectures

Blackboard architectures—as is beginning to emerge from what we have seen so
far:

� provide a problem-solving model for organising knowledge
� provide a potential strategy for applying the knowledge
� allow a range of knowledge representation methods to be applied to a given

situation.

Blackboard systems allow the knowledge base to be segmented, making it more
maintainable, and making the implementation more efficient. This also allows a
range of knowledge representation methods to be applied.

When applying a blackboard architecture, the knowledge base is segmented into
modules, each with its own inference engine; each module is called a KS. The
reasons for using segmentation include:

� It allows each module to use its own knowledge representation method.
� By segmenting one large knowledge base into several smaller KSs the system

becomes more efficient and maintainable.

However, each module must provide information in an agreed format, so that other
modules can use it. To facilitate this working memory is sub-divided into regions
and structured appropriately, this is called the blackboard.
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Communication between modules will then take place only via the blackboard
with each KS contributing to the solution whenever the data it requires is available
on the blackboard.

Application of Blackboard Architectures

Knowledge-based systems and blackboard architectures can be used in a variety
of situations. The following example is based on building a house.

A large KBS to design an entire house would be difficult to build and inefficient
to run. Therefore, to solve this problem, several smaller KBSs can be developed.
Each smaller KBS can have its own inference engine and these can use different
knowledge representation schemes if required.

Blackboard

General layout & gardens

House structure Kitchen

Dining room Living room

Knowledge sources

KBS to design general 
layout of the house and 
grounds

KBS to design the 
gardens

KBS to design the 
internal house structure

KBS to design the 
kitchen

Etc. etc.

FIGURE 6.4. Blackboard architecture for house building system.

Initially, the KBS is used to design the general layout of the house and the sur-
rounding grounds and paths.

Other KBSs will then be used to provide more detailed designs of the gardens, the
internal structure of the house, and even the precise layout of the kitchen. However,
the design must proceed from the high level first, so that the KBS dealing with the
more detailed designs have the parameters within which to operate. For example,
the kitchen KBS needs to know the size of the kitchen and location of doors,
windows and plumbing, etc. to be able to place sinks, washers and worktops in the
correct location.

So, to start at the beginning, imagine also a blackboard designed to communicate
these designs. Pictorially, we see areas of the blackboard segmented off, one area
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showing the general layout of the gardens, one area which will display the house
structure, one area that will display the design for the kitchen and dining room,
etc.

Each KS communicates and writes results, or draws their designs on the black-
board. Initially, the blackboard will be empty although all of the KSs will be
allowed access to it. Initial requirements of the house and garden (including the
dimensions and positioning of windows, etc.) will be added to the blackboard.
When this is complete, the KBS for the garden design, and the KBS to design the
internal structure, will both be able to start their work.

Thus one large KBs is segmented into several smaller KS’s.

Advantages and Limitations of Blackboard Architectures

As indicated earlier, when you wish to link several sources of expertise, in problems
that naturally have ‘layers’, then the blackboard architecture is a good approach.

The overall problem is broken down into specific tasks, aiding maintenance, im-
proving efficiency and allowing each KS to use whatever reasoning mechanism
is most appropriate to it. Thus, the most appropriate knowledge representation
scheme may be used by each KS and overall a range of schemes may be used. This
aids flexibility.

Summary

In this section you have been introduced to the nature and potential application of
blackboard systems and have seen how a real system was used.
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SECTION 3: PROBLEM-SOLVING METHODS

Introduction

This section explains the use of general Problem Solving Methods (PSMs) and
some of the generic issues affecting the use of all PSMs.

Objectives

By the end of the section you will be able to:

� evaluate the use of control and domain knowledge within ESs
� discuss the advantages and limitations of using PSMs.

Problem-Solving Methods

Problem-solving methods, in common usage, specify the sequence of tasks that
are needed to solve a problem, and the knowledge required by the method.

Knowledge acquisition was traditionally seen as an exercise in acquiring domain
knowledge from the expert. How that was processed was the responsibility of the
inference engine.

In practice, for efficiency reasons the knowledge was structured so that the funda-
mental questions were asked first, and the inference proceeded to a solution follow-
ing the same reasoning process as the expert used. This reasoning process is called
control knowledge and is quite different from subject (or domain) knowledge.

More recently knowledge acquisition has come to be viewed as a modelling exer-
cise where the reasoning processes, the domain knowledge and even the behaviour
of the organisation can all be modelled separately. By modelling the problem-
solving behaviour of experts, we can develop PSMs for generic tasks such as
design, diagnosis and scheduling.

PSMs and Tasks

Among the requirements of an intelligent system is a certain degree of robustness:
the system should be able to support some changes to its task specification. One
way of providing such an ability is to allow the user to modify the system in
order to control how tasks are performed and to specify new tasks within the
general capabilities of the system itself. Those modifications are modifications of
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the system knowledge base that concern a certain subset of the knowledge: the
control or problem-solving knowledge.

One way of achieving such robustness is to couple an ES with a knowledge-
acquisition tool where some domain-independent theory of the problem-solving
process is explicitly represented.

Activity 4
This activity helps you recognise the advantages of separating domain-
independent PSMs from domain knowledge.

Look at the following problem that was presented to students in an examination:
Air (Cp = 0.24 Btu/lb◦F) enters a preheater at 80◦F and leaves at 300◦F; flue
gases (Cp = 0.24 Btu/lb◦F) enter at 600◦F. A total of 180,000 lb of air per hour
are heated by 188,000 lb of gas per hour. The coefficient of heat transfer, U, is
125 Btu per hour per sq ft per deg ◦F. Calculate the surface area of the tubes if
the heater is arranged in parallel flow.

If we suggested that the ‘problem solving method’ involved:
� stating the problem
� listing symbols and their meaning
� listing assumptions
� identifying equations
� calculating
� stating the answer.
What advantages might there be in separating PSMs from the knowledge that
might need to be applied?

Feedback 4
You should have been able to recognise that:
� The PSM is open to inspection, and can be improved without necessarily

affecting the domain knowledge.
� By separating the PSM from the domain knowledge we enable reuse of either.
� Two or more PSMs for solving the same generic task can be compared, and

we can use whichever is more suited to a particular task.

Examples of PSMs

Problem-solving methods generally fall into two categories:

� Classification—where solutions are selected from a pre-enumerated set
� Construction—where solutions are created during problem solving.



Life Cycles and Methodologies 201

Actual examples of PSMs include:

� propose and revise (P&R), e.g. for an elevator configuration
� acquire and present, e.g. for a report
� extrapolate from a similar case, e.g. for sizing requirements for a computer

system.

We will look at the first of these in some detail.

Propose and Revise

Propose and revise is a PSM to accomplish a configuration task. Propose and revise
works by proposing a value for each parameter of a system at a time and checking
to see whether each parameter satisfies all constraints on it.

In particular, within constructive problems, a configuration design task can be
solved by the P&R problem solving method (Marcus and McDermott, 1989). This
method belongs to a family of similar methods for configuration problems (pro-
pose critique-and-modify, propose-and-exchange, etc.) and simulates how a human
being proposes the components of a design in a step-by-step manner meanwhile
analysing whether it violates some constraints. If so, a remedy is applied based
on heuristic knowledge in order to modify the original proposal. This process is
repeated until, if possible, a satisfactory configuration is found.

The abstract structure of this method assumes the existence of three kinds of
knowledge to be represented with three knowledge bases:

� derivative knowledge
� compatibility knowledge
� remedy knowledge.

Activity 5
This activity will help you understand the nature of the P&R PSM.

Below are descriptions of the three kinds of knowledge mentioned above.
Indicate on the left-hand which kind of knowledge the description relates
to. Hint words in the descriptions have been removed to make this more
challenging.

This knowledge is used to verify a proposed design and includes a set of criteria
to identify cases. This knowledge can be formulated as a set of
constraints where each constraint expresses the set of conditions.

This is knowledge to propose a design that includes specific criteria to deduce a
complete design from initial specifications. This knowledge can be formulated
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as direct relations between initial data, intermediate parameters and final pa-
rameters (numerical or qualitative) that describe how each parameter obtains its
value from the values of other parameters. One important requirement of this
knowledge is that these relations do not have to include loops to avoid circular
calculation.

This knowledge includes a set of criteria to solve a violation detected in
the design. This knowledge can be represented as rules that define types of

actions (fixes) to solve each type of violation. Together with this
knowledge, there are a set of preference criteria based on priorities to select
fixes when different fixes can be used for the same violation.

Feedback 5

Compatibility knowledge
This knowledge is used to verify a proposed de-
sign and includes a set of criteria to identify in-
compatible cases. This knowledge can be formu-
lated as a set of constraints where each constraint
expresses the set of incompatible conditions.

Derivative knowledge This is knowledge to propose a design that in-
cludes specific criteria to deduce a complete de-
sign from initial specifications. This knowledge
can be formulated as direct relations between ini-
tial data, intermediate parameters and final pa-
rameters (numerical or qualitative) that describe
how each parameter obtains its value from the
values of other parameters. One important re-
quirement of this knowledge is that these rela-
tions do not have to include loops to avoid circu-
lar calculation.

Remedy knowledge This knowledge includes a set of criteria to solve
a violation detected in the design. This knowl-
edge can be represented as rules that define types
of remedy actions (fixes) to solve each type of vi-
olation. Together with this knowledge, there are
a set of preference criteria based on priorities to
select fixes when different fixes can be used for
the same violation.
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FIGURE 6.5. Example of propose and revise inference structure.

Propose and revise was originally implemented by SALT, a knowledge acquisition
tool that generates P&R systems (Marcus, 1988). Propose and revise has been
modelled for the VT (vertical transportation) task, based on the description made
by Yost (1994). The VT task defines the design problem in which the goal is to
configure an elevator.

Figure 6.5 illustrates the inference structure for P&R abstracted from the VT
domain.

In Figure 6.5, the SELECT PARAMETER inference chooses one parameter to
have its value computed. The inference uses the Input Parameters, the Parameter
Values already computed and the Parameter Dependency Relations to obtain a
Selected Parameter.

The PROPOSE inference computes the value of the selected parameter. The infer-
ence uses the Selected Parameter and the Parameter Procedures to compute new
Parameter Values.

The CHECK inference verifies the constraints after computing parameter val-
ues. The inference uses the new Parameter Values computed, the Constraint
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Procedures, and the Constraint Dependency Relations to compute the Constraint
Results.

The SELECT VIOLATED CONSTRAINT chooses one violated constraint to be
revised. The inference uses the Constraint Results and the Fix Dependency Rela-
tions to generate one Selected Violated Constraint.

The REVISE inference remedies a violated constraint. The inference uses the
Selected Violated Constraint, Fixes and Fix Procedures to repair the constraint
violation, and to propose new Parameter Values (Coelho and Lapalme, 1996).

As implemented in the SALT software (SALT—a knowledge-acquisition tool for
propose-and-revise using a role-limiting approach) there are three types of knowl-
edge roles:

� procedures to assign a value to a parameter, which would result in a design
extension

� constraints that could be violated in a design extension
� fixes for a constraint violation.

The user can enter one of the three types of knowledge: PROCEDURE, CON-
STRAINT and FIX. For each type of knowledge, a fixed menu (or schema) is
presented to the user (in SALT’s case a domain expert) to be filled out.

An example of the information provided by a user for a constraint is as follows
(from [Marcus and McDermott, 1989]):

1 Constrained value CAR-JAMB-RETURN
2 Constraint type MAXIMUM
3 Constraint name MAXIMUM-CAR-JAMB-RETURN
4 Precondition DOOR-OPENING = SIDE
5 Procedure CALCULATION
6 Formula PANEL-WIDTH * STRINGER-QUANTITY
7 Justification THIS PROCEDURE IS TAKEN FROM

INSTALLATION MANUAL I, P. 12b.

Reusing PSMs and Reusing Domain Knowledge

Problem-solving methods can be reused on other similar problems in different
domains. For example, the general process of designing a car may be very similar
to the general process employed when designing a house. Thus the PSM may be
reused for other design tasks.

Furthermore, different PSMs for different problems can potentially use some of the
same domain knowledge. For example, a knowledge of electronics and electrical
components within TVs can be used by a PSM to fix faults in current TVs. This
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domain knowledge can be used by another PSM to design new TVs. Thus domain
knowledge can be reused for different applications.

Activity 6
This activity will help you extend your understanding of the concept of reuse
in relation to PSMs.

Visit the Internet Reasoning Service at: http://kmi.open.ac.uk/projects/irs/

Produce a set of brief notes on the types of reuse described there.

Feedback 6
Your notes should clearly distinguish:
� direct reuse
� parameterised reuse
� generic plug and play.

Genericity or Ease of Use?

To enable reuse we need to develop a library of PSMs. However, these are often
difficult to classify, as we need to specify the:

� genericity, i.e., the task independence
� formality
� granularity, i.e., the scale of the PSMs contained within the library.

Furthermore, there is a usability/reusability trade off to consider.

Activity 7
Consider the following scenario. You have at your disposal two very successful
professional designers.

Person A has successfully designed a wide range of things: houses, bridges,
gardens and even a railway station but they have never designed any electrical
device.

Person B has successfully designed: HiFi, MP3 payers, digital cameras and
computers but all they have ever designed is electrical equipment.

Which person would you choose to design a new plasma screen TV?

Which person would you choose to design a museum?
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Feedback 7
When it comes to choosing the best person for the job you have to consider
which one has the most appropriate knowledge.
� For the task of designing the plasma screen TV you presumably choose person

B. Even though they have never designed a TV before they clearly have a
detailed knowledge of electrical systems, having already designed a range of
electrical devices.

� For the task of designing a museum you presumably choose person A.
Person B is a very successful designer however they have never designed
anything except electrical equipment. Person A has had a very varied design
career. Even if they know nothing about museums they can draw on a wide
range of experience. Presumably before designing the museum they will
need to find out about museums and they may need to expand their design
knowledge slightly. For example, they may need to learn how to design
crowd control spaces.

This scenario demonstrates an important concept: the issue of generic knowl-
edge verses ease of reuse. Person A has a generic design knowledge that can
be reused in a wide range of situations, however before it is reused it may need
adapting/updating. Person B can easily reuse their knowledge, without the need
for adaptation, however this knowledge is more focused, i.e., less generic, and
therefore can only be reused in a limited range of situations.

Task-independent PSMs will require refinement and adaptation before they can be
used but can be reused in a wide range of situations.

Task-dependent PSM may require little or no adaptation but can only be reused in
some circumstances.

A very generic design PSM, i.e., a task-independent PSM, may be used to design
houses, cars and clothes. However, because it is a very generic PSM, it may need
to be refined for each task before use. In contrast, a task-dependent PSM created
specifically for designing electrical equipment may be used to design TVs, DVDs
or computers without any adaptation but would not be appropriate for other design
tasks such as designing houses or gardens.

The use of PSMs has one significant advantage over the use of blackboard ar-
chitectures, namely they promote reuse. By separating control knowledge from
domain knowledge reuse of both is enabled.
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Activity 8
Consider the following scenario. A KBS is created for a car mechanic to di-
agnose faults in a range of cars. This system is created with the control and
domain knowledge as separate components. Thus we have:

The process of fault

finding i.e. control

knowledge

Knowledge of cars i.e.

domain knowledge

Identify other situations in which we can reuse the control knowledge.

Identify other situations in which we can reuse the domain knowledge.

Feedback 8
By plugging in knowledge of other equipment such as mobile phones or com-
puters the control knowledge can be reused to make other fault-finding KBS.
These could be used by other technicians.

By creating a control method to describe the process of designing equipment
the domain knowledge of cars can be reused to create a KBS that designs cars.

Limitations of PSMs

The limitations of PSMs include:

� To enable reuse we need to develop a library of PSMs. However, PSMs are
difficult to classify. We need to specify the genericity (task independence) and
granularity (size).

� There are reusability—usability trade offs to consider. Task-independent PSMs
will require refinement and adaptation before they can be used. They can however
be reused in a range of situations. Task-dependent PSMs require little adaptation
before use, but they are less easily used elsewhere.

Summary

This section has provided an introduction to how KBSs can be supported with
separate libraries of PSMs.
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Web Links
Generic Task Toolset
http://www.cis.ohio-state.edu/lair/Projects/GTToolset/toolset.html
IBROW
http://swi.psy.uva.nl/projects/IBROW3/home.html
KEML
ftp://swi.psy.uva.nl/pub/keml/keml.html
Protege
http://smi-web.stanford.edu/projects/protege/
Sisyphus III
http://www.psyc.nott.ac.uk/research/ai/sisyphus/
VITAL
http://kmi.open.ac.uk/∼john/vital/vital.html

Self-Assessment Questions

Question 1

Contrast the reusability of task-dependent and task-independent PSMs.

Question 2

Describe the role of the following three inferences in the P&R PSM:

� propose
� check
� revise.
How does the select parameter inference function?

Suggested Solutions

Answer 1

Task-independent PSMs require refinement and adaptation before they can be used
but they can be reused in a range of situations.

Task-dependent PSMs require little adaptation before use but they are less easily
reused elsewhere.

Answer 2

The PROPOSE inference computes the value of the selected parameter.
The CHECK inference verifies the constraints after computing parameter values.
The REVISE inference remedies a violated constraint.

The SELECT PARAMETER inference chooses one parameter to have its value
computed and uses the Input Parameters, the Parameter Values already computed
and the Parameter Dependency Relations to obtain a Selected Parameter.
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SECTION 4: KNOWLEDGE ACQUISITION
DESIGN SYSTEM (KADS)

Introduction

This section provides an explanation of the KADS methodology.

Objectives

By the end of the section you will be able to:

� describe KADS.
� Understand how KADS is an example of a PSM.

Purpose of KADS

In general information systems development, there are many methodologies that
can be used to provide an overall control of that development.

Within KBS development however, there was no overall design strategy for a
considerable time.

Activity 9
This activity will draw on your knowledge of information systems development
to help you anticipate the need for something significantly different in relation
to methodologies for KBS development.

Considering the process of developing an information system, what factors
might make it difficult to directly apply such methodologies to the development
of KBSs?
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Feedback 9
You should have been able to recognise that most information systems are
concerned with data and KBSs are concerned with knowledge. Data is gener-
ally much more accessible—being stored in databases of one kind or another,
whereas knowledge is stored in the minds of experts.

Knowledge-based systems also tend to be more complex. Information systems
often perform numerical calculations which have a correct answer, e.g. a worker
who works for 10 hours for £10 per hour should get paid £100. £99.99p while
very close would be an incorrect answer. A KBS on the other hand simulates
a human being making decisions. While decisions can be good decisions or
bad decisions they cannot usually be clearly categorised as right or wrong.
For example, when choosing a university course, clearly some courses are in
a subject that will interest the student more than others and some will lead
to qualifications that will enable a graduate to find work more easily than
others. Taking these factors into account you may choose to do a degree in
computing. If you are not reasonably able in mathematics doing an engineering
degree may be a poor choice for you—but this decision could not be clearly
categorised as a wrong decision. Thus checking the quality of the outputs from
a KBS is much more difficult than checking the outputs from an information
system.

The KADS is an attempt to overcome this difficulty by providing a system for
knowledge engineers and ES developers to follow.

Knowledge acquisition design system aims to solve two specific problems in KBS
development:

� Firstly, large-scale problems could not easily be solved by one knowledge base—
especially if it was restricted to one knowledge representation scheme—and
which was very inefficient to run and difficult to maintain. This was overcome by
the development of blackboard architectures and the same principle of segmented
knowledge bases is supported by KADS.

� Secondly, the benefits of explicitly separating control and the domain knowl-
edge became clear as the modelling approach was adopted, and thus the KADS
methodology was developed as a problem-solving methodology (see previous
section).

Knowledge acquisition design system, and its more recent variant, Com-
monKADS, is the most commonly used methodology within Europe for the devel-
opment of KBSs. KADS is the most prominent example of a PSM-based method-
ology, thus discussions in the previous section apply to KADS.
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Knowledge Acquisition in KADS

The KADS approach includes the following knowledge acquisition activities:

� Elicitation—eliciting the knowledge
� Analysis—interpreting the knowledge
� Formalisation—formalising the knowledge so that it can be used in a computer.

Before KADS, there was an approach to knowledge acquisition that consisted
simply in:

� acquiring domain knowledge
� transferring knowledge (somehow) to a KBS.

In this approach the experts reasoning process was not modelled—it was left to
the inference engine to determine if/when to apply the knowledge.

The KADS approach treats the knowledge-acquisition process as a modelling
activity, i.e., the expert’s problem-solving knowledge is modelled, among other
models, this leads to the efficient application of domain knowledge and allows
reuse of control and domain knowledge.

Multiple Models in KADS

Based on the ideas of modelling the PSMs, KADS supports the development of
various models. These include:
Process or organisation model, where the processes within the organisation are

modelled in order to assess the role and impact of the KBS. This reduces the fric-
tion that may occur when trying to implement the KBS within the organisation.

Expertise model, models the problem solving or expert behaviour required of the
system. Knowledge acquisition design system libraries of reusable PSMs have
been created to support prediction, assessment, design, planning and schedule
tasks.

Activity 10
This activity involves you in discovering the characteristics of some of the other
models used in KADS.

Other models that may be used in the KADS approach include:
� Application model—defines the functions of the system with respect to users
� Task model—defines the tasks that the KBS must perform
� Cooperation model
� Conceptual model
� Design model.

1. Search the Internet for documents relating to the last three of these models.
2. Make brief notes on their purpose.
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Feedback 10
You should have been able to locate documents describing the models as fol-
lows:

Cooperation model—specifies how subtasks in the task model should be done if
cooperation is necessary. This model would need to be applied if, for example,
the solution of a problem by the system required information from the user.

Conceptual model—this is essentially a combination of the models of expertise
and cooperation as these together specify the overall behaviour of the system.
Such a model would be based on abstract descriptions of the objects and oper-
ations that the system needs to know about.

Design model—specifies how to implement the system in the form of descrip-
tions of computational and representational techniques as well as hardware and
software requirements.

Theses models essentially represent steps in defining the goals of the KBS devel-
opment.

Some of the advantages of this multiple model approach in KADS are that those
involved in the development of the KBS can more easily identify, describe and
select characteristics of the targeted system as well as focus on specific aspects
while ignoring—at least for the moment—other components.
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Activity 11
This activity will help you visualise the relationship between the various models
used in the KADS methodology.

Complete the following diagram that illustrates the relationship between the
various models.

Organisational Model ____________ Model 

Task Model 

______________ Model __________ Model

Conceptual Model

__________ Model System 
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Feedback 11
Your completed diagram should look like this:

Organisational Model Application Model

Task Model 

Cooperation Model Expertise Model

Conceptual Model 

Design Model System

The KADS Four-Layer Model

As well as using modelling as a technique for describing the components of a KBS
during the process of its development, KADS views a completed KBS using a
model with four layers. This four-layer model provides a method of representing
knowledge within an ES (see Figure 6.6).

Domain Layer

The domain is the static knowledge in the KBS. The basic knowledge and some
relationships are recorded by the knowledge engineer using the linguistic level of
the conceptual model.
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Domain

Inference

Task

Strategy

FIGURE 6.6. The four-layer KADS model.

The Inference Layer

Knowledge is grouped into related units, or meta-classes and a useful classifica-
tion system is devised. Relationships between knowledge may be identified and
recorded in frames or semantic networks. In this layer, knowledge is being trans-
formed from the linguistic level to the conceptual level.

Task Layer

This layer describes how the domain knowledge and inferences from that knowl-
edge can be used to solve a specific task. It uses the conceptual links in the knowl-
edge and then attempts to add the epistemological relationships.

Strategy Layer

This layer deals with the overall approach and planning involved in solving a
problem. The aim is to identify problems in the knowledge-building process (e.g.
inconsistent rules) at an early stage in the system design process. It therefore at-
tempts to place a formal structure on knowledge, moving from the epistemological
level to the logical level prior to implementation.



216 An Introduction to Knowledge Engineering

Activity 12
You are a knowledge engineer attempting to elicit knowledge to build a new
ES. The knowledge domain is weather prediction. You are currently working
on a module to forecast the amount of rainfall.

Knowledge from the expert indicates that there are many variables affecting
accurate weather forecasting including wind speed and direction as well as
overall temperature, not only on the ground but also in the clouds. The expert
notes that rainfall may be preceded by a fall in temperature, while winds blowing
off the sea to the west provide an increased chance of rainfall.

As far as the information allows, start to produce a four-layer model for a KBS
by outlining which components of the model will refer to the information and
knowledge available.

Feedback 12
You should have been able to produce an outline similar to the following:
Domain layer
Data concepts include: temperature, wind speed, wind direction, amount of
cloud cover, etc.

Inference layer
Inferences from the data concepts will include:

Falling temperature indicates increased probability of rain.
A westerly wind from the sea normally provides increased chance rain.

Task layer
The basic task or reasoning technique is chosen, with a decision being made
concerning task-driven or goal-driven structures (or alternatively a choice will
be made between backward or forward chaining).

Strategy layer
The formal structure of the knowledge is identified (this is a forecasting model)
and the appropriate data structures designed.

Strengths and Weaknesses of KADS

A major advantage of the KADS approach is in the idea of generic task models
(GTMs), also known as interpretation models. These can be thought of as skele-
ton models for typical tasks or task fragments, such as ‘classification’ or ‘system
diagnosis’ stored in generic task libraries. Knowledge engineers can use suit-
ably chosen GTMs to guide the knowledge-acquisition process in a new domain,
refining and combining GTMs to produce a fully specified model.
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KADS does have weaknesses, for example:

� It is difficult to translate between or connect the different layers.
� All the layers are rarely used; most people tend to use the diagrams, but these

are not expressive enough for all requirements.
� KADS systems typically end up with large amounts of documentation for rela-

tively modest systems and are hard to change.
� KADS does not itself specify the representation types to be used in describing

its various models.

The last point is important, since we must decide what our needs are for repre-
sentations. Suitable representations must have a two-sided functionality, i.e., they
must be able to:

� express the language of the testing techniques
� describe systems in such a way that they are recognisable to those who must

contribute to the development of evaluation models.

Summary

In this section you have seen how the KADS methodology can be used to construct
a variety of models to bridge the gap between required behaviour and system
behaviour for a KBS.

Web Links

CommonKADS

http://www.commonkads.uva.nl/frameset-commonkads.html
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SECTION 5: THE HYBRID METHODOLOGY (HyM)

Introduction

This section provides an introduction to HyM and its use within the design of
hybrid intelligent information systems (HIISs).

Objectives

By the end of the section you will be able to:

� evaluate the place of HyM in knowledge engineering.

Hybrid Methodology (HyM): An Introduction

HyM is a more recent ES development methodology—developed, in fact, at the
University of Sunderland—aimed at supporting the creation of HIISs. It aims to
provide an enhanced software development life cycle that supports project devel-
opment both incrementally and in one go. The methodology recognises that many
information needs in society can be satisfied by the development of conventional
information systems. However, additional use could be made from these systems
by integrating intelligent or KBSs with them.

Activity 13
This activity will help you understand the concept of HIISs by asking you to
integrate what you know of conventional information systems with the knowl-
edge of KBSs you have gained so far from this book.

Compare and contrast the main features of conventional information systems
and KBSs.
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Feedback 13
You should have been able to highlight the differences between conventional
and KBSs approximately as follows:

Conventional information systems
Conventional information systems are designed to provide specific functions
over a collection of shared data in some information repository. The data
being used is generally well structured and therefore susceptible to traditional
processing.

KBS
Intelligent systems or KBSs or intelligent systems are designed to manage
and handle knowledge and deduce other information from that knowledge.
The system uses declarative knowledge and some reasoning mechanism to
help reach appropriate decisions. Many KBSs are tailor-made to the specific
knowledge domain that they are working in.

The HyM methodology supports the development of systems that integrate proce-
dural information processing and declarative knowledge-based processing. These
two types of processing are modelled and integrated in systems created with the
methodology.

An overview of the HyM life cycle is shown in Figure 6.7.

Integration and
maintenance

Feasibility
study

Implementation

Analysis
 and designEvaluation

FIGURE 6.7. The HyM life cycle—overview.



220 An Introduction to Knowledge Engineering

Analysis and design

Interface
analysis

Interface
evaluation

Interface
design

Interface

Model
design

 Model
analysis

Model
evaluation

System

Integration  and
maintenance

Feasibility
study

Evaluation

Implementation

FIGURE 6.8. The HyM life cycle (in more detail).

HyM Development Life Cycle

The HyM development life cycle in more detail looks like Figure 6.8.

As already suggested, the development follows the standard life cycle approach
with all systems going through the phases of:

� Feasibility study
� Analysis and design
� Implementation
� Evaluation
� Integration and maintenance.

The life cycle also includes some iteration, within the combined analysis and
design stage which can be completed using incremental prototyping.

Looking at the analysis and design stage of the HyM life cycle in even more detail
(see Figure 6.9), we can see that provision has been for the development of user
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User model
analysis  

Interface analysis

Interface evaluation

User model
 evaluation 

Interface design

User model
design

FIGURE 6.9. Integrating user modelling into HyM.

models. By explicitly promoting the creation of user models the HyM methodology
is recognising that different system users have different needs, this is particularly
true for the users of HIIS, and by modelling these needs a system can be developed
to take into consideration the individual needs of the user when responding with
advice or recommendations.

The HyM life cycle bears some similarities to both the Waterfall model and the
evolutionary prototyping approach to software development.

The HyM Life Cycle and the Waterfall Model Compared

The classic Waterfall life cycle is simple to understand but as a tool to control
a software-engineering project, fundamentally flawed. It implies a strongly se-
quential process through the steps of systems analysis, design, coding, testing and
maintenance. It presumes that at the end of the analysis stage all of the details and
functionality of the required system can be determined. However, as many projects
have shown, it is not always possible to obtain a perfect set of requirements and
this has caused many projects to overrun in terms of development cost and time.

Even when adapted to allow previous stages of the life cycle to be revisited, the
Waterfall model is still flawed. While previous stages can be revisited, it still
strongly implies moving forward through the life cycle and that by revisiting
previous stages a backward step is being taken. Furthermore it implies that at the
testing stage it is permitted, presumably sometimes even necessary, to go back as far
as the analysis stage. This has specific implications for the cost of any software-
engineering project. To find out during the design phase, that more analysis is
required has quite different cost/time implications than finding out during the
testing phase.
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In particular, when developing KBSs there is a particular difficulty to be
addressed—this is specifying the knowledge to be contained with the system.
It is very difficult when developing a KBS to define exactly what knowledge is
required. For example, if a KBS is advising a university applicant about suitable
courses it should presumably offer advice based upon the subject and career inter-
ests of the applicant but should it also assess the applicant’s academic suitability
and personality traits? When assessing academic suitability should it assess in-
tellectual skills only or other skills such as creative, group work, communication
and social skills? This problem is aided by the use of a prototyping life cycle
where the knowledge base can be iteratively evaluated and gaps in the reasoning
process identified and corrected. Finally, it will be shown by demonstration that
the reasoning capabilities of the knowledge bases are adequate even when it was
impossible to initially define what knowledge was required.

Thus by comparison with the Waterfall model, HyM has an integrated analysis
and design phase with a highly iterative loop. Preliminary analysis is followed by
preliminary design and then by an evaluation stage. These three steps are repeated
until evaluation shows that the analysis has fully captured the requirements of
the knowledge base components and that the design adequately reflects those
requirements.

Throwaway prototypes are used as part of the analysis stage.

Activity 14
This activity helps to interpret the advantages the HyM life cycle has over the
Waterfall model.

Drawing on your knowledge of the Waterfall model gained in previous modules,
suggest what advantages are available with the HyM life cycle.

Feedback 14
You should have been able to suggest some of the following:
� There is no implication that analysis should be finished prior to the design

starting with implied failure when this is not the case.
� Contrary to this there is a strong implication that more analysis will be re-

quired after preliminary design has taken place. In doing the preliminary
design a better understanding of the problem can evolve and this knowledge
can help guide the further analysis that will be required for complex projects.

� Emphasis is placed on evaluation. This is essential to ensure that the finished
analysis fully captures the requirements for the system and that the design
of the system is also satisfactory. Thus, when the analysis is finished we can
have confidence in the final product.
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The HyM Life Cycle and the Spiral Model Compared

When developing knowledge based, or hybrid components, specific quality issues
need to be addressed by the evaluation. These include ensuring the completeness
and depth of knowledge and ensuring the quality of the reasoning processes encap-
sulated within the system. As part of this evaluation process it will be necessary
to test the quality and completeness of the knowledge and reasoning processes
designed by developing throwaway prototypes (implemented using a shell or con-
venient tool).

However, there are several fundamental differences between this approach and the
spiral model:

� Unlike the spiral model this is not an incremental development phase. The loop
within the analysis and design stage has one purpose only, to ensure the quality
of the design for the part of the final system currently under development. This
iteration will occur whether or not the decision was made to develop the entire
system in one phase or incrementally. These incremental iterations are the outer
loop of the HyM life cycle, not the inner loop within the analysis and design
phase (see Figure 6.8).

� By separating these two loops the incremental loop will be less frequent and
more definable. This will facilitate better planning for large projects and help
generate foreseeable project end dates.

� Finally, unlike the spiral model, the inner loop does not encompass the develop-
ment phase. Thus software is not constantly evolving into the finished product.
Any prototypes developed during the analysis and design phase are throwaway
prototypes used as analysis, design and evaluation tools. From the designs gen-
erated ‘clean’ products (i.e., with entirely fresh code) are developed during the
implementation stage.

The HyM life cycle thus addresses the weakness of the spiral model, namely its
lack of scalability and its weakness as a management tool.

User Centred Design (UCD) and the Role of Intelligent
Interface Technology

In the early stages of the analysis and design phase emphasis is placed firmly on
management of stable data and knowledge so as to ensure validity of systems.
However, considering the needs of the users become increasingly important as the
functionality of the system becomes clearer. In other methodologies user involve-
ment varies from participation only at evaluation stages, to right through the entire
life cycle. In the HyM methodology UCD is promoted implying that system users
are made a central issue throughout the design process.

Two distinguishable user tasks are advocated, as a member of the design team
responsible in core system development and a wider role in interface design.
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A particular issue to be considered is the behaviour KBS or hybrid components
within the system. As discussed in a previous chapter we expect human experts
to be able to explain their reasoning and thus we would like a KBS to have this
facility also. One issue to be considered is the format of these explanations.

Activity 15
Consider the following two statements and identify which statement is intended
for a patient and which is intended for a nurse.

Statement 1. ‘Metatarsal ligament stretched, prognosis is good, immobilise and
elevate’.

Statement 2. ‘The patient has strained a ligament in the foot. The foot will be
OK within a week or two but it needs to be strapped up for support and rested
with the foot raised’.

Feedback 15
These two statements have the same meaning however you should have been
able to recognise that the first statement was issued by a doctor for a nurse the
second was the doctor’s explanation for a patient.

By appreciating that patients and nurses have different levels of understanding
a doctor can tailor their messages appropriately.

A HIIS must make its messages appropriate to the needs of the user. This requires
a level of intelligence on behalf of the interface. A user model is an essential part
of intelligent interface technology as it is this that allows the system to understand
the needs of the user and respond accordingly. In HyM the development of a user
model is an integral part of the interface cycle. In the case of HIIS, the user model’s
role is clear: to model users for the purpose of tailoring system responses.

Strengths of HyM

The HyM life cycle has the following advantages when developing HIISs:

� Separate loops to allow incremental development, at the discretion of the project
manager, and for quality control. This will improve project management and aid
the estimation of final dates for the deployment of the finished system.

� A highly iterative, combined analysis and design phase that will guide the analy-
sis required for large complex projects and facilitates an evaluation of the analysis
undertaken and the corresponding system design. This is essential to ensure the
completeness and quality of the reasoning contained within the system.

� Separation of stable functional requirements from volatile user considerations
to facilitate the development of reusable repositories and components.
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� The seamless integration of information system technologies and knowledge-
based technologies, either tightly or loosely coupled depending upon the require-
ments of the system.

� Support for the development of intelligent interfaces allows system messages to
be tailored to the needs of the user.

Hybrid Intelligent Information Systems (HIISs)

Many applications are developed with no integration between conventional and
intelligent systems. However, the increased amount of data being made available
to businesses means that more complex systems are required to access and retrieve
that data; in other words there is a need for hybrid systems. Development of
these systems will mean that large stores of data will be managed more efficiently
providing some benefit to organisations and society as a whole.

Format of a HIIS System

Hybrid intelligent information systems include two types of knowledge:

� algorithmic
� expert’s reasoning.

Algorithmic knowledge refers to the format of the computer software, where
object-orientated programming will be used to produce and control the knowl-
edge base and handle problems.

Expert’s reasoning is captured by means of rules and frames in the standard elic-
itation process. The rules and frames are converted to objects within the HIIS
system.

Structured analysis methods are used to analyse system-structured procedural
functions. Information management methods are used for the data analysis and
a knowledge analysis method (e.g. KADS) is selected to perform the knowledge
analysis.

An intelligent integrated hospital patient system, as described below would be one
example of a HIIS (see Figure 6.10).

Imagine an intelligent integrated hospital patient system made up of the following
three component systems:

� A patient administration system
� A patient diagnostic system
� An intelligent appointment system.
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FIGURE 6.10. A hybrid intelligent information system.

The patient administration system would be a conventional procedural record
keeping system, i.e., a database system used to manage patient records, details of
drugs prescribed, a doctor’s records and test results.

The patient diagnostic system would be a KBS used by doctors to aid diagnosis in
certain complex situations. As this is integrated into the same system as the patient
administration system it would be able to share access to the same databases and
thus automatically have access to patient data stored elsewhere in the system.
Similarly, a diagnosis made by this component could be recorded and accessed by
the patient administration system.

These two components integrated together would thus form a HIIS and enjoy the
benefits offered by seamlessly sharing data.

The intelligent appointment system would in itself represent a highly coupled HIIS
and demonstrates the power of integrating these two diverse technologies. Imag-
ine a conventional patient appointment system with added diagnostic knowledge.
Instead of appointments being offered to patients on a first come first served basis,
the knowledge component could grade the appointment as ‘Life threatening’, ‘Ur-
gent’ or ‘Non-urgent’ and appointments could then be offered on this basis. Thus,
patients with life-threatening conditions would gain priority access over others.

The architecture of a HIIS system is shown in Figure 6.11. This consists of
3 levels:

� Repositories Level,
� Components Level, and
� HISS Level.
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FIGURE 6.11. The architecture of a HIIS system developed using HyM.

Repositories Level

This contains the knowledge, procedures and databases to be used within the
system. While each of these can be designed separately, care must be taken to
ensure that they contain detail relevant to the domain being modelled.

Components Level

This level contains the three different types of software used in a HISS system—
conventional information system components, KBS components and hybrid
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components. The KBS components can be ESs, neural networks, case-based rea-
soning components or any other type of knowledge component. Thus within one
system it is possible to integrate conventional information system components and
KBS components. Integrating information system components with KBSs allows
the development of large software systems where elements of those systems exhibit
intelligent characteristics.

Hybrid Intelligent Information System Level

At this level the software is viewed as a complete unified system.

Summary

In this section you have learned how the HyM methodology provides an appro-
priate approach for the development of systems integrating the components of
conventional and intelligent systems.

Self-Assessment Question

Question 1A

A large KBS is required to diagnose equipment faults on a North Sea Oil Extraction
Platform (a very large and complex piece of equipment).

Which of the following methodologies would be appropriate method for this
problem?

� Blackboard architectures
� KADS
� HyM.

Question 1B

For the application above it has now been decided to develop the KBS in such a way
that some of the knowledge contained within the system will describe problems
that are common to other Oil Extraction platforms and this knowledge may be
reused when developing future systems. Briefly assess the support each of the
following methodologies give to a knowledge engineer who wishes to develop
reusable knowledge components.

� Blackboard architectures
� KADS
� HyM.
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Question 2

The University of Sunderland is the main participant in current research into HyM.
Obtain a list of current published papers and try and identify any practical appli-
cations of HyM from this list.

Answer to Self-Assessment Question

Answer 1A

When choosing an appropriate methodology (blackboard architectures, KADS and
HyM) we need to consider

� the scale of the problem
� the need to separate control and domain knowledge
� the limitations imposed by one inference engine
� the maintenance of large KBSs
� and the ability to integrate procedural and declarative reasoning.

The problem as described is clearly huge and therefore for efficiency and main-
tenance reasons it is essential to segment the knowledge base. One knowledge
base implies one inference engine. Segmenting the knowledge base allows the
use of multiple inference engines and hence flexibility in the choice of knowl-
edge representation schemes. It is not certain if multiple knowledge representa-
tion (KR) schemes are required here but the scale of the problem would indicate
this is a possibility. For all these reasons it is necessary to segment the knowl-
edge base and thus the use of a methodology such as blackboard architectures is
essential.

However do we need to consider the use of KADS or HyM?

KADS has various advantages over blackboard architectures but the most important
are the separation of control and domain knowledge (enabling reuse) and advanced
modelling features, e.g. modelling the impact of the KBS on the organisation. It
is not clear that either of these features is required for the application specified.

When considering HyM we need to consider if a hybrid intelligent information
system is required. The specification above suggests only a KBS is required. In
some applications it is easy to see the benefits of integrating a KBS with a con-
ventional information system (e.g. a KBS to recommend suitable courses could be
integrated with an online application form) but until such an advantage is suggested
HyM would not be the most appropriate methodology.

Having considered the alternatives it would appear that blackboard architectures
is the most appropriate methodology to apply.
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Answer 1B

Knowledge reuse has now been specified; this eliminates blackboard architectures
as a candidate methodology as using this methodology no attempt is made to
separate control and domain knowledge.

Problem-solving methodologies (of which KADS is an example) are very good
at promoting reuse, as specified in the problem. However, there are still com-
plex issues to be resolved. There is of course the usability/reusability trade off to
consider, the development of PSM libraries and the difficulty in specifying task
genericity/granularity.

There is still no indication that a hybrid system is required thus HyM is not the
most appropriate methodology.

Despite the issues, KADS is the clear choice here.

Answer 2

A list of current research papers (from 2000 to 2003) is provided below and
following on from this is a short description of one system developed following
the HyM methodology.

S. L. Kendal, K. Ashton and X. Chen, ‘A Brief Overview of HyM: A Method-
ology for the Development of Hybrid Intelligent Information Systems’, Proc.
of the 15th Int. Conf. on Software Engineering and Knowledge Engineering,
San Francisco, California, USA, July 2003; ISBN 1-891706-12-8

K. Ashton and S. L. Kendal, ‘Introducing User Centred Design into a Hybrid
Intelligent Information System Methodology’, Proc. International Conference
on Computing and Information Technologies, Montclair, New Jersey, USA,
October 2001

S. Kendal and X. Chen, ‘Towards Hybrid Knowledge and Software Engineering’,
Proc. International Conference on Computing and Information Technologies,
Montclair, New Jersey, USA, October 2001

K. Ashton, S. L. Kendal and M. R. Hawthorne, ‘HyM: A Hybrid Methodology for
the Integration of Conventional and Knowledge Based Information Systems’,
Proc. 4th International Conference Neural Networks and Expert Systems in
Medicine and Healthcare, Greece, June 2001

U. Rashad, P. Arullendran, M. Hawthorne and S. Kendal, ‘A Hybrid Medical
Information System for the Diagnosis of Dizziness’, Proc. 4th International
Conference Neural Networks and Expert Systems in Medicine and Healthcare,
Greece, June 2001

S. Kendal, X. Chen and A. Masters ‘HyM: A Hybrid Methodology for the De-
velopment of Integrated Hybrid Intelligent Information Systems’, Proceedings
of Fusion 2000—3rd International Conference on Information Fusion, Paris,
July 2000.
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A Hybrid Medical Information System for Dizziness

The main area where this methodology has so far been used is in the development
of a hybrid medical intelligent information system.

HMISD, called Hybrid Medical Information System for Dizziness, is a typical HIIS
for the diagnosis of vertigo diseases. It was developed as part of a research project.
This system involves many activities that often happen in hospitals and doctor’s
offices, such as registration, medical record management, clinical diagnosis, lab-
oratory information management, clinical research and drug data management.
This complex software system consists of those components in traditional medical
information systems and medical KBSs.

The HMISD software was based on the requirements of North Riding Infirmary
(NRI), Middlesbrough, UK, a hospital specialising in diseases of the ear, nose and
throat.

Dizziness is a common complaint and can be a symptom of numerous disease
processes. These can vary from psychogenic disorder in origin to presentations of
serious intra-cranial pathology. Wright describes dizziness as follows:

‘Dizziness is a difficult condition, and having to diagnose and manage the dizzy
patient may seem like being thrown in at the deep end when you can only just
swim’ (Wright, 1988).

The system developed was a hybrid medical information system that incorporated
traditional medical information system and medical KBSs. It allowed patients
or clerks to input medical records and symptoms as with a traditional medical
record system. The system suggests the most probable disease diagnosis and gives
suggestions as to the most suitable investigations.

The five major components of the system are:

� a medical record system
� a clinical decision support system
� a pharmacy system
� a laboratory information system
� a clinical research system.
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SECTION 6: BUILDING A WELL-STRUCTURED
APPLICATION USING AION BRE

Introduction

This section discusses how the theory we have looked can be implemented in
practice, using an industry standard knowledge engineering environment (Aion
BRE).

Objectives

By the end of the section you will be able to:

� understand how a well-structured application can be implemented using an in-
dustry standard tool.

Review of Theory

During this chapter we have looked at three methodologies. We have seen how, in
order to aid maintenance and allow a range of knowledge representation schemes
to be used, blackboard architectures promote segmented knowledge bases.

We have also seen how PSMs, and KADs in particular, promote the separation of
control knowledge from domain knowledge in order to allow either to be reused.

We will now see how, based on these ideas, an ES may be structured and how this
would be implemented in Aion BRE.

A Simple Example

An ES is required to recommend financial investments. Some potential users of the
system will be investing their life savings and therefore the investment application
should invest their money cautiously. While investing in the stock market may
give better returns over a long period investing the money from these users on
the stock market would be unwise as the stock market could go down as well as
up. However, some of the users of the system will be wealthy customers who are
planning to invest what is for them relatively small sums of money. Such customers
would accept an element of risk in their investments as long as this is likely to give
a higher rate of return. Therefore, the first task the ES should perform is to classify
the acceptable level of risk (low or high). Having made this decision, the system
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should go on to recommend several good investment opportunities in order that
the user of the system could make the final choice for themselves.

Looking at this application it is clear the system must make two separate decisions:
classify the customer according to the acceptable level of risk and recommend
investments.

It is clear that at least two separate knowledge bases are required one for each
of these tasks. However, when considering investment knowledge it would seem
sensible to subdivide this knowledge into two parts: knowledge of high-risk in-
vestment opportunities and knowledge of low-risk opportunities.

Having segmented the knowledge base we can now consider using different knowl-
edge representation schemes for each knowledge base. On the assumption that for
each of these we have decided to encode our knowledge using rules we can now
decide whether to use forward chaining or backward chaining for each part of the
decision making process.

For the first task ‘classify customer’ we have one clear goal to determine the level
of risk (low or high). This would suggest that backward chaining would be the most
appropriate method. An additional advantage of using backward chaining would
be that only relevant questions are asked and thus this reduces the time spent by
the user answering questions.

For the second task, recommend investments, there are multiple goals to be consid-
ered (each potential investment opportunity). This would therefore indicate the use
of forward chaining. Clearly, this may necessitate the user answering numerous
questions up front. For pragmatic reasons if this was too burdensome the system
could be developed using backward chaining though this would limit the effec-
tiveness of the recommendations. For the sake of this example we will presume
that forward chaining has been chosen for this task.

We have now segmented our knowledge base, as theory suggests we should, and
considered where we should use forward chaining and backward chaining. How-
ever, we have as yet to separate control and domain knowledge.

The domain knowledge is the declarative statements regarding the suitability of
various investment opportunities and the knowledge required to classify a user.

The control knowledge is the procedural process that the expert would follow in
making his or her decision that the proposed ES should mimic. In this example
the process is quite simple: first the customer, or user, should be classified, then
when classified the relevant investments should be identified using the appropriate
knowledge and the result displayed.
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Rules posted dynamically 
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FIGURE 6.12. A structured investment ES.

An overview of a structure for such a system is given in Figure 6.12.

At the left-hand side of Figure 6.12, we can see simple procedural instructions
as you would expect to see in any computer program. In the middle we can see
two objects containing control knowledge. These contain procedural information
but also initiate and control the inference process. The recommend investment
object selects which domain knowledge is to be used when forward chaining is
initiated. On the right are the three domain knowledge bases. These do not contain
procedural information as it is the inference engine that decides if/when these rules
should be used.

Thus we have now seen how the knowledge base within an application can be
segmented and how control and domain knowledge is separated.

Creating a Benefits Advisor

In considering another example you will see how a system can actually be imple-
mented using Aion BRE.

A knowledge base system is required to advise applicants what benefits they are
entitled to—this includes child allowances, disability benefits, rent rebates and
other benefits. The system should be well structured with segmented knowledge
bases and use forward and backward chaining as appropriate.

Overall plan for system . . .
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Application starts with an application window 

which may include menus, help system etc.  

Application determines applicant,s eligibility to

apply for benefits (single goal therefore 

backward chaining and data collected as 

required).

Application determines which combination of 

benefits the applicant is eligible for (multiple 

goals therefore forward chaining and data 

collected before inference starts). 

Activity 16
Following the format of the investment advisor diagram, Figure 6.12, draw a
diagram to show the structure of the benefits advice system proposed. Identify
on your diagram domain knowledge and control knowledge.

Feedback 16
Your diagram should look similar to the diagram below.
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It is possible that you may not have identified the eligibility rules component.
A component such as this is usually required for efficiency purposes. It may
be that there are some simple requirements that must be met for all benefit
applicants, e.g. being a resident in the country where you are applying for
benefits. If this condition is not met then asking a lot of questions about family,
financial and physical circumstances would be a waste of the applicant’s
time. Thus the system determines whether or not an applicant meets the basic
requirements before proceeding to ask detailed questions.

Aion BRE is a modern knowledge engineering development environment and like
most modern software development tools it is built upon the principles of object
orientation. A full discussion of this tool is beyond the scope of this book. However,
for our purposes it is sufficient to say that Aion BRE:

� supports segmented knowledge bases
� supports the separation of control and domain knowledge
� allows a combination of rule- and frame-based reasoning (not relevant to this

application)
� is fully object oriented with objects (called classes) that contain procedural

code (in methods), control knowledge (also in procedural methods) and domain
knowledge (in rule methods).

The application as described above was implemented in Aion BRE and the fol-
lowing segment of code was taken from the control method used to determine an
applicant’s eligibility for benefits.

INFER // Start inference block
GoalMakeUnknown(->Eligibility) // Set Eligibility as unknown
EligibilityRules // Post the rules for inferencing
Backwardchain(->Eligibility) // Trigger backward chaining to

// deside on Eligibility
END // End inference block

The segment of code below was taken from the control method to determine which
benefits an applicant is entitled to. The code is a little more complex than the code
above but reading though it you should be able to follow the logic.
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if pAppl.getEligibility = FALSE // If they are NOT eligible
then

messagebox(“Sorry you are not eligible for any benefits”)
else // If they are eligible then

pPersonalDetails = PersonalDetails.Create // create and open dialog box
// to get personal details.

pPersonalDetails.OpenModal(age,disabled, no of children)

INFER // start inference block

Childallowances // post child allowance rules
DisabilityBenefits // post disability benefits rules
Rentrebates // post rent rebate rules
Otherbenefits // post other benefit rules

Forwardchain // Trigger forward chaining
to find the specific

// combination of benefits
applicant is entitled to.

END // end inference block

if pAppl.GetEligiblebenefits = ”” // Display results
then

result = “You are not entilted to any benefits.”
else

result = “You are eligible for the following benefits” &
pAppl.GetEligiblebenefits

end
messagebox(result)

end // End processing
of eligible applicants

Summary

In this section you have learned how:

� a large knowledge base can be segmented
� the inference process can be tailored to each knowledge base (in this case forward

or backward chaining)
� control and domain knowledge is separated
� Aion BRE implements the theoretical principles discussed in this chapter.
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7
Uncertain Reasoning

Introduction

In this chapter we will be looking at the need to build facilities for handling
uncertainty into knowledge-based systems (KBSs). We will look at one simple
way of handling uncertain answers, and three different methods of dealing with
uncertain reasoning:

� confidence factors
� probabilistic reasoning
� fuzzy logic.

We will briefly look at the advantages and disadvantages of each of these three
methods.

The chapter consists of four sections:

1. Uncertainty and expert systems
2. Confidence factors
3. Probabilistic reasoning
4. Fuzzy logic.

Objectives

By the end of the chapter you will be able to:

� evaluate how expert systems can deal with uncertainty
� describe the use of confidence factors in dealing with uncertainty
� explain probabilistic reasoning and how to define probabilities within expert

systems
� explain and use Bayes theorem
� analyse the use of fuzzy logic in dealing with uncertainty.

239
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SECTION 1: UNCERTAINTY AND EXPERT SYSTEMS

Introduction

This section introduces the principle of uncertainty, and shows how uncertainty
can be dealt with in expert system design.

Objectives

By the end of the section you will be able to:

� evaluate how KBSs can deal with uncertainty.

Introduction to Uncertainty

So far in this book, we have assumed that an event or activity either occurs or does
not occur, or that a declarative statement is either true or false. While this assump-
tion has helped us understand how an expert system works, it is not necessarily
true of the real world. Many situations or events cannot be predicted with absolute
certainty (or confidence). For example, it is almost impossible to say whether or
not it will rain on any given day; rather a probability of rainfall is given. The same
situation is true for many other events: there is a probability of occurrence, not
absolute certainty or uncertainty.

This chapter describes three methods of dealing with uncertainty:

1. Confidence factors
2. Probabilistic reasoning
3. Fuzzy logic.

Before these methods are described, we need to look at the concept of uncertainty
at a more fundamental level.

Reasoning with Missing Information

People cope with uncertainty and uncertain reasoning in many complex situations.
Frequently, when trying to deduce the answer to a question, they will assume
default or common values when precise data is unknown.

For example, when trying to design a house, it may be that the designer will assume
certain things such as the layout of the path leading up to the house or where
the front door should be. Based on these assumptions, the designer will design
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the general layout of the rooms and the internal passageways, before designing
specific details within the rooms.

At some point during this design process, some of the earlier assumptions and
some of the early conclusions may be proven to be incorrect. In such a case, part
of the reasoning process will have to be redone, and the original solutions; i.e.,
internal design features, will have to be thrown away and redesigned. The term
for this process is non-monotonic reasoning, which is a method of reasoning that
sometimes needs to be built within KBSs.

Clearly, if the design of the house requires data that is missing; for example, the
number of people that this house has to accommodate, then the design reached
may not be perfect. The more data that is missing, the more guesses the designer
has to make, the lower the quality of the final design of the house will be. However,
there is only a gradual degradation in performance.

People can cope well with some items of missing data. That is, they do not fail to
reach a solution just because one or more items of data are missing. In this situation,
the human designer can cope with some data that is missing or information that is
uncertain. Not only can they cope with missing or uncertain information, but they
can still attempt to find a solution to the problem when they are uncertain of some
of their reasoning processes.

However, for many problems, the process is complicated by the fact that there is
rarely one correct solution. There is often a range of possible solutions, thus some
solutions may be more desirable than others.

Therefore, a system designed to emulate the human reasoning process needs to
be able to generate several potential solutions, and rank them in terms of their
desirability.

One very simple method of building the ability of handling uncertainty into a KBS,
is to allow the user to specify yes, no or unknown when answering questions. If
the user answers unknown then extra processing can be triggered by the inference
engine to determine an answer when a user cannot. For example, imagine an
expert system careers advisor that may want to know if you have good hand/eye
coordination before recommending a job as a pilot. If a user answered ‘unknown’
to this question the system may be able to infer an answer by asking other questions
such as ‘are you good at fast computer games involving combat?’ or ‘are you good
at fast ball games such as squash?’

Another method is to use confidence factors—sometimes called certainty
factors—which allow the user to express a range of confidence when answering
questions, instead of just ‘yes’, ‘no’ or ‘unknown’. The answer can be expressed
as any number between 0 and 1, where 1 is definitely yes, 0 is definitely no, and
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numbers in between represent some expression of confidence that the answer is
yes. This also allows uncertainty to be expressed, not just in the information, but
also in the reasoning process.

Causes of Uncertainty in Expert System Design

There are two main causes of uncertainty that occur during the design of expert
systems, uncertain information and uncertain reasoning.

Uncertain Information

Firstly, when answering questions posed by the expert system to solve a problem,
the user (or patient in this case) may not remember some specific information such
as when or whether they have had a specific disease.

Uncertain Reasoning

Secondly, the conclusion for a specific rule may not always be guaranteed to be
correct. This usually occurs because the knowledge base of the expert system
contains relationships that are known to be not always true. For example, it is clear
from medical evidence that people with high blood pressure have a higher than
normal chance of having a heart attack. However, it is also clear that not everyone
with high blood pressure does actually have a heart attack. Hence, while we may
be certain that a patient has high blood pressure we cannot be certain that they will
have a heart attack.

An expert system working with uncertain information and using uncertain reason-
ing can still reach some very important conclusions. If a doctor told you that you
needed to take medication to reduce your blood pressure you would be unlikely
to disregard this advice just because they were not certain that you would have a
heart attack.
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SECTION 2: CONFIDENCE FACTORS

Introduction

This section shows how confidence factors can be used to manage uncertainty by
acting as a measure of it.

Objectives

By the end of the section you will be able to:

� use confidence factors in dealing with uncertainty
� evaluate the usefulness of confidence factors as a technique for managing uncer-

tainty in knowledge base systems.

Confidence Factors

We need to consider two kinds of uncertainty

Uncertainty in Antecedents
� based on the data supplied by the user or
� deduced from another rule in the rule base.

Uncertainty in a Rule
� based on the expert’s confidence in the rule
� based on uncertainty in the data and rules must be combined and propagated to

the conclusions.

Imagine we have a rule that states that if A is true, then B is true.

This can be written as:

A => B

If we are uncertain that A is true however, then clearly we are uncertain that B is
true. If we are 80% certain that A is true then we will be 80% certain that B is true:

A => B
0.8 0.8
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However, in many situations, there is uncertainty concerning the validity of the
rule itself. If, given A we are only 80% certain of B we could write this as

0.8
A => B

But what if we are also unsure about A?

0.8
A => B
0.8 ?

In this situation, we can only be 64% certain of event B occurring (0.8 × 0.8 =
0.64).

In other words, if we are only 80% certain that A will occur, we can only be 64%
certain of B occurring, i.e., 0.8 × 0.8 = 0.64.

This demonstrates that as we follow an uncertain chain of reasoning, we become
less and less certain that the result we obtain is accurate. The way in which confi-
dence is propagated through a chain of reasoning is defined by propagation rules.
In this context, ‘rule’ is used in a different sense to the word ‘rule’ in ‘rule based
system’.

Reasoning with Confidence Factors

When two independent pieces of corroborating evidence each imply that the result
is true, clearly this should make us more certain of the result. If we are 80% certain
that A implies C, and 80% certain that B implies C, then if A and B are both true,
how confident are we that C is true?

Together, clearly we must be more than 80% confident that C is true, as both of
these independent pieces of evidence suggests that is the case; so the answer must
be higher than 0.8. But still we cannot be 100% certain, so the answer given must
be less than one.

To calculate this we invert the rules; i.e., we take the rule A implies B and say that
given A we are 20% (i.e., 100%—80%) certain that B is not true, and given B we
are 20% certain that C is not true.

We then multiply these two numbers together (0.2 × 0.2 to give us 0.04) and thus
we can say that given A and B, we can be 4% certain that C is NOT true.

Inverting this again (100%—4%) gives us that A and B together means that we
are 96% confident that C is true. We therefore get an answer that shows clearly
that, given these two corroborating pieces of evidence, we are now very confident,
though still not 100% certain, that C is true.
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Activity 1
Given that

0.8 0.6
A => B => C
0.8
How confident are we that C is true?

Feedback 1
Our confidence that C is true is 0.8 × 0.8 × 0.6 = 0.38

Activity 2
This activity introduces you to inference networks and provides the opportunity
for some practice in calculating combinations of confidence factors.

Look at the following diagram:

A

C

B

D

B AND D E

1.0

0.8

0.5

0.5

0.8

0.25

0.25

0.9
  ???

This is known as an inference network and illustrates a sequence of relation-
ships between the facts A to E and the confidence factors assigned to the facts
as well as the rules connecting them.

The first three equations governing the application of different confident
factors and their combination as we work through the network from left to
right are as follows:

CF(B) = CF(A) × CF(IF A THEN B) = 1 × 0.8 = 0.8
CF(D) = CF(C) × CF(IF C THEN D) = 0.5 × 0.5 = 0.25
CF(B&D) = min (CF(B),CF(D)) = min (0.8, 0.25) = 0.25

There are two separate rules being applied here to the ways in which confidence
factors are combined, depending on the context. What do you think these rules
are?

What justification is there for the difference in these rules?

Complete the calculation for the fourth equation:

CF(E) = CF(B&D) × CF (IF B&D THEN E) =
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Feedback 2
You should have been able to interpret the rules being applied in the equations
as follows:

The first equation applies the rule whereby the confidence factors for the fact
A and for the rule IF A THEN B are multiplied together to give the confidence
for the fact B.

The second equation applies the same rule to calculate the CF(D).

This is appropriate since we begin with certainty (CF = 1) for fact A and this
is adjusted for the 0.8 confidence in the rule itself IF A THEN B. Similarly, we
begin with CF = 0.5 for fact C and then adjust for the confidence in the rule IF
C THEN D.

The third equation adopts a different approach and takes the minimum of CF(B)
and CF(D) since the lack of confidence in the combination of the two com-
ponents can only be as high as the confidence in the weakest (link) of the
two.

The fourth equation can be completed as follows:

CF(E) = CF(B&D) × CF(IF B&D THEN E) = 0.25 × 0.9 = 0.225

Strengths of Confidence Factors

The main strengths of using confidence factors is that they allow us to:

� express varying degrees of confidence, which allows these values to be manip-
ulated

� rank several possible solutions, especially if not too much emphasis is placed on
the actual numerical values generated.

It is in this latter respect particularly that confidence factors differ from probabili-
ties, which are calculated values.

Limitations of Confidence Factors

The limitations of confidence factors include:

� Confidence factors are generated from the opinions of one or more experts, and
thus there is very little hard evidence for these numbers in practise. People are
notoriously unreliable when assigning numbers to express levels of confidence.

� As well as two people finding very different numbers, individuals will also be
inconsistent on a day-to-day basis on placing values on confidence factors.
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Not withstanding the comment above if a doctor said they were:

� 90% confident that a patient had pneumonia
� 5% confident that a patient had the flu
� 1% confident that a patient had a common cold.

Without placing too much emphasis on the actual numbers we can see that the
doctor strongly believes that the patient has pneumonia, and while we recognise
that other possibilities exist, the patient should receive the appropriate care for this.

Summary

In this section you have learned about confidence factors and how these can be
applied to rules in a knowledge base in order to allow meaning to be extracted
from the knowledge even where uncertainty exists.
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SECTION 3: PROBABILISTIC REASONING

Introduction

This section introduces the principle of probabilistic reasoning, and shows how
Bayes theorem can be used to determine the extent of that uncertainty, firstly in a
written example, and then using formulae.

Objectives

By the end of the section you will be able to:

� explain probabilistic reasoning and how to define probabilities within knowledge
based systems

� explain and use Bayes theorem.

Bayesian Inference

Probability theory originated with Pascal in the seventeenth century. In the eigh-
teenth century Reverend Bayes developed a theorem that forms the basis of con-
ditional probability. Most attempts to use probability theory to handle uncertainty
in KBS are based on Bayes theorem.

If enough data, of the right sort, is available, statistical analysis based on conditional
probability theory is the best way to handle uncertainty. However, there is often
simply not enough data to produce adequate sample sizes, or the data does not
have the necessary properties, such as independence from one another.

Bayes theorem can be represented by the following equation.

P(A|B) = P(B|A)P(A)

P(B)

In other words, the probability (P) of some event A occurring given that event B
has occurred is equal to the probability of event B occurring given that event A
has occurred, multiplied by the probability of event A occurring and divided by
the probability of event B occurring.

A Bayesian inference system can be established using the following steps.

1. Define a set of hypotheses, which define the actual results expected.
2. Assign a probability factor to each hypothesis to give an initial assessment of

the likelihood of that outcome occurring.
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3. Check that the evidence produced (i.e., the outcome of the expert system’s
decision-making process) meets one of these hypotheses.

4. Amend the probability factors in the light of the evidence received from using
the model.

Defining the Hypotheses

The system may have one or more goals. This is the hypothesis that the system has
to prove. Those goals are normally mutually exclusive and exhaustive, i.e., only
one goal can be achieved.

Activity 3
This activity will help you grasp the implications of the logic underlying Bayes
equation.

If:
� P(H ) is the prior probability of the hypothesis H being true, before we have

determined whether any of the evidence is true or not.
� P(E : H ) is the probability of an event E being true, given that a hypothesis

H is true.

Consider this in the light of an actual example:

When the base rates of women having breast cancer and having no breast cancer
are 1% and 99% respectively, and the hit rate is given as P(positive mammog-
raphy/breast cancer) = 80%, applying the Bayes theorem leads to a normative
prediction as low as P(breast cancer/positive mammography) = 7.8%. That
means that the probability that a woman who has a positive mammography
actually has breast cancer is less than 8%.

What are represented by:
� P(H : E)
� P(E:not H)

Feedback 3
You should have been able to recognise that:
� P(H:E) is a probability of a hypothesis H (e.g. breast cancer) being true, given

that an event E (positive mammography) is true, and
� P(E:not H), is the probability of an event E being true, given that the hypothesis

H is known to be false.

Defining the Probabilities

One method of dealing with uncertainty is to state the outcomes from a particular
system as a set of hypotheses. There is an inherent assumption within this model
that one of the hypotheses will actually occur, so care is needed to ensure that the
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set of possible hypothesis is complete. Each hypothesis is given a probability of
occurring, providing a guide to how often that outcome can be expected.

For example, the set of outcomes from throwing a dice can include the hypothesis
that an even number is thrown (50% probability) or an odd number is thrown (also
a 50% probability).

Similarly, a set of hypotheses can be produced for the different diseases that a
person could be suffering from. Probabilities can be calculated for each disease
showing how likely it is that the patient has that disease.

Checking the Evidence Produced

The accuracy of the probabilities attached to each hypothesis will be tested by
collecting evidence about the outcome actually achieved. In effect, the hypothesis
is proved by ensuring that the evidence actually falls within one of the expected
hypotheses.

Amending the Probabilities

The idea the probabilities must be assigned to each hypothesis introduces one of
the main points of Bayesian inference: some assumption must be made concerning
the initial probabilities of each hypothesis occurring.

However, as evidence is obtained showing whether or not each outcome was de-
termined correctly from the facts available, these probabilities can be updated to
provide a better match to reality. In turn, this enables the expert system to provide
more accurate answers to the problems presented to it.

Example of the Application of Bayes theorem

The hypothesis (H) is that a patient visiting a doctor has the flu. The events (E) are
the symptoms that are presented by that patient such as:
� running nose
� sneezing
� high temperature
� headache.

The prior probability based on previous experience is that P(flu) = 0.3, or there
is a 30% chance that any patient walking into the doctors surgery has the flu. This
probability will be amended as information about the patient becomes known.

In this case let’s imagine that the patient does have a high temperature, runny nose
and is sneezing, but has no headache. How do we determine the specific probability
of flu given this particular set of symptoms?
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Given one symptom, then a new probability of having flu can be determined by
collecting statistical data as follows.

Probability of flu Probability of not flu

When patient has a high temperature 0.4 0.6
When patient has a runny nose 0.4 0.6
When patient has a headache 0.5 0.5

This suggests that, of those people who have a high temperature, 40% of these
have the flu and 60% don’t, and so on.

Without knowing anything about a visitor to the doctor’s surgery therefore, we can
determine that there is a 30% likelihood that they have flu. If we discover that they
also have a high temperature, we can deduce that there is now a 40% likelihood of
this person having flu.

However, how do we determine the probability that they have the flu, given the
fact that they have a combination of symptoms such as:

� high temperature and runny nose
� high temperature and headache
� runny nose and headache?

The probability of having flu will increase for any one of the symptoms
but patients often present a unique combination of symptoms, and we can-
not measure the probability of patients having the flu given a specific set of
symptoms.

We cannot measure the probability of the hypothesis given event 1, and event 2,
but not event 3, as this would require us collecting 100 past cases of patients that
have an identical set of symptoms to the current patient. Such an opportunity is
highly unlikely to exist. However, we can easily measure the prior probability of
the hypothesis.

We can also easily measure the probability of the event, given the hypothesis for
each and all of the events, or symptoms, we wish to measure. For example, if we
take 100 people who are known to have the flu; for each of these, we can find out
how many of them have a high temperature, how many have a runny nose, and
how many have a headache.

We can also measure P(E:given not H), i.e., sample 100 visitors to the surgery
diagnosed with ailments other than flu. We can look at this population, and ask, in
turn, how many have a runny nose, headache or high temperature.



252 An Introduction to Knowledge Engineering

This data is quite easy to obtain, and given Bayes theorem, we can then calculate the
probability of the hypothesis; i.e., that someone has the flu given any combination
of symptoms we choose. In doing this we have changed our data collection slightly
but significantly.

Instead of fixing the symptom, and then determining how many patients with this
symptom have the flu, we first sample 100 people with the flu and determine the
probabilities of the symptoms appearing. Similarly, we sample 100 people who do
not have the flu, and determine the probabilities of the same symptoms appearing.

Imagine that we wanted to determine the probability of the hypothesis if two
symptoms were evident but a third symptom was not, e.g.

P(flu: given high temperature and runny nose but no headache) = ???

We cannot measure: P(H:E1 and E2 and not E3) as this would require finding 100
previous patients with this exact combination of symptoms. At the same time we
would need 100 patients with every other possible set of symptoms—and there
could be an almost infinite set of combinations.

However, we can measure the probability where three different events will occur
to support the hypothesis:

P(E1 : H), P(E2 : H), P(E3 : H)

Also, we can measure

P(E1 : not H), P(E2 : not H), P(E3 : not H)

i.e., testing that the three different events do not support the hypothesis.

Using Bayes theorem we can then calculate the probability of H given E1 and E2

occurring to support the hypothesis but E3 not occurring:

P(H : E1 and E2 and not E3)

Assume that the following data is available.

Probability of high Probability of runny
temperature nose

When flu is true 0.7 0.6
When flu is not true 0.5 0.2

In this case, we sample 100 people who have the flu and determine that 70% of
them have a high temperature.

In 100 people who do not have the flu, 50% of these have a high temperature.
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Activity 4
Determine why do these two numbers (70% and 50%) do not add up to 100%.

Feedback 4
You should have been able to recognise that the two numbers do not add up to
100% because we are sampling two different populations, i.e., 100 who have
the flu and 100 who do not have the flu.

Similarly, we look at the population of those people with the flu, and 60% of
those have a runny nose. In a sample of 100 people who do not have the flu and
we find that only 20% of those have a runny nose. We do the same to determine
the probability of the symptom ‘headache’ being true, given that the hypothesis
flu is true, and the probability of symptom ‘headache’ being true given that the
hypothesis, flu, is not true. Notice that this data is not the same as shown in the
previous table and that numbers do not necessarily add up to 100%.

Collecting this data is fairly simple. We merely sample 100 patients who have
been diagnosed with flu, and we take 100 patients who have been diagnosed as not
having the flu, and determine the probabilities of the symptoms for each of these
populations of patients. We can now repeatedly use Bayes equations to calculate
the probability of flu, given a range of symptoms.

Another way of writing the Bayes theorem is using the two equations below.

P(H:E) = P(E:H) P(H)

P(E:H) P(H) + P(E:not H) P(not H)

P(H:not E) = (1 − P(E:H)) P(H)

(1 − P(E:H)) P(H) + (1 − P(E:not H)) P(not H)

The first of these equations is used to calculate the probability of a hypothesis
given an event or symptom is true, the second is used if an event or symptom is
not true.

Let’s imagine that a patient has a high temperature, and the prior probability of
the flu is 0.3. We can use the equations to calculate the probability that this patient
has the flu, now that we have discovered that they have a high temperature. As the
symptom is true, i.e., the event is true, we use the first equation, and calculate the
probability of the hypothesis. The first equation says we calculate the probability
of the event given the hypothesis, and multiply that by the prior probability of the
hypothesis.

We divide all of this by the part of the equation beneath the line, which is the prior
probability of the event, given the hypothesis multiplied by the prior probability of
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the hypothesis, plus the probability of the event given not the hypothesis multiplied
by the prior probability of not the hypothesis.

The prior probability of not the hypothesis, in other words P(not H) is clearly just
one minus P(H), the prior probability of the hypothesis.

Using the equations and the data taken from the table above we can now calculate
the probability of flu for a range of symptoms.

Assuming ‘High Temperature’ is true and ‘Runny nose’ is false we firstly calculate
the probability of flu given that high temperature is true using the first equation.
Initially, we ignore the fact that runny nose is false—we take account of this later
by using the second equation.

Thus we use the first equation

P(H:E) = P(E:H) P(H)

P(E:H) P(H) + P(E:not H) P(not H)

to calculate P(flu:high temperature).

Given that the prior probability of having flu is 0.3, then the equation can be
completed as follows.

P(H:E) = 0.7 × 0.3

0.7 × 0.3 + 0.5 × 0.7

Therefore,

P(flu:high temperature) = 0.375

Now that the probability of having flu with a high temperature is set at 0.375, then
the probability of having flu with two symptoms can be derived. As the second
symptom is false we use the second equation

P(H:not E) = (1 − P(E:H)) P(H)

(1 − P(E:H)) P(H) + (1 − P(E:not H)) P(not H)

to calculate P(flu:high temperature, not runny nose).

In this case P(H) is not 0.3, it is the calculated value of 0.375 as we are taking the
fact that the patient has a high temperature into consideration.

Applying the probability factors from the different events produces the following.

P(H:not E) = (1 − 0.6) × 0.375

(1 − 0.6) × 0.375 + (1 − 0.2) × (1 − 0.375)
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This means that the probability of the hypothesis being correct with the patient
having a temperature but not a runny nose can be stated as:

P(flu:high temperature, not runny nose) = 0.23

We can repeat the process above many times in order to calculate the probability
of flu given any specific combination of symptoms a patient may have.

Clearly, at the same time as calculating the probability of flu we would, in parallel,
also calculate the probability that the patient has a common cold and all other po-
tential hypotheses. By determining which symptom has most effect on all of these
calculations we will know which symptom is most important and thus which ques-
tion the doctor should ask next. Furthermore, before asking any more questions we
can determine if the probabilities could change significantly. If so then we have not
yet reached a firm conclusion. However, if the probabilities will not change signifi-
cantly irrespective of the answers a patient may give then we can be satisfied that we
have reached a definitive diagnosis and no longer need to ask anymore questions.

Bayesian Networks

A Bayesian network (also known as Bayes net, causal probabilistic network,
Bayesian belief network, or simply belief network) is a compact model repre-
sentation for reasoning under uncertainty.

A problem domain—diagnosis of mechanical failures, for instance—consists of a
number of entities or events. These entities or events are, in a Bayesian network,
represented as random variables. One random variable can, for instance, represent
the event that a piece of mechanical hardware in a production facility has failed. The
random variables representing different events are connected by directed edges to
describe relations between events. An edge between two random variables X and Y
represents a possible dependence relation between the events or entities represented
by X and Y. An edge could, for instance, describe a dependence relation between
disease and a symptom—diseases cause symptoms. Thus, edges can be used to
represent cause–effect relations. The dependence relations between entities of the
problem domain are organised as a graphical structure. This graphical structure
describes the possible dependence relations between the entities of the problem
domain, e.g. a Bayesian network model for diagnosing lung cancer, tuberculosis,
and bronchitis would describe the cause–effect relations between the possible
causes of these diseases.

The uncertainty of the problem domain is represented through conditional proba-
bilities.

Conditional probability distributions specify our belief about the strengths of the
cause–effect relations, e.g. lung cancer does not always produce a positive (bad)
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chest X-ray, or a mechanical failure does not always cause an alarm to sound. Thus,
a Bayesian network consists of a qualitative part, which describes the dependence
relations of the problem domain, and a quantitative part, which describes our belief
about the strengths of the relations.

Bayesian networks have been applied for reasoning and decision making under
uncertainty in a large number of different settings. The next activity requires you
to identify some applications.

Activity 5
This activity will help you appreciate the usefulness of the Bayesian approach
to dealing with uncertainty in KBSs.

Search the Internet for examples of the use of Bayesian networks.

Feedback 5
You might have discovered examples of the application of Bayesian Networks
to any of the following:
� Medicine—diagnosis of muscle and nerve diseases, antibiotic treatment, di-

abetes advisory system, triage (AskRed.com).
� Software—software debugging, printer troubleshooting, safety and risk eval-

uation of complex systems, help facilities in Microsoft Office products.
� Information processing—information filtering, display of information for

time-critical decisions, fault analysis in aircraft control.
� Industry—diagnosis and repair of on-board unmanned underwater vehicles,

control of centrifugal pumps, process control in wastewater purification.
� Economy—credit application evaluation, portfolio risk and return analysis.
� Military—NATO Airborne Early Warning & Control Program, situation as-

sessment.
� Agriculture—blood typing and parentage verification of cattle, replacement

of milk cattle, mildew management in winter wheat.

The Strengths of Probabilistic Reasoning

� Bayes theorem is mathematically sound so it provides a good basis for the
investigation of uncertainty.

� The results of using this method have strong justification, adding value and
credibility to the output from expert systems.

� Probabilistic reasoning, when compared with confidence factors (only expres-
sions of opinion), has higher validity because the results are based on mathemat-
ically proven reasoning and statistical data.



Uncertain Reasoning 257

The Limitations of Probabilistic Reasoning

� Needs statistical data to be collected from previous results, and will only work
where this data is available. Furthermore, this data may not be accurate invali-
dating the results of the hypothesis being tested.

� Often one might have to rely on human estimates of one or more of these prob-
ability factors. But if you have to do that, it might be better to let experienced
experts estimate the relevant probabilities from the start. This is the point of view
of the advocates of confidence factors.

Summary

This section introduced the principle of uncertainty, and showed how Bayes the-
orem could be used to determine the extent of uncertainty, firstly in a written
example, and then using formulae.

Self-Assessment Question

The following information is available concerning why a motor vehicle will not
start. The hypothesis is that the battery is flat (i.e., not working) and so the engine
will not start.

Probability of Probability of Probability of
engine turning noisy alternator lights working

When battery flat is true 0.1 0.5 0.3
When battery flat is not true 0.7 0.4 0.6

Assume that the prior probability of a flat battery is 0.7. Complete the Bayesian
equation assuming that car lights are working but that the engine is not turning.

Answer to Self-Assessment Question

Calculate probability of having a flat battery given that the car lights are working.

P(H:E) = P(E:H) P(H)

P(E:H) P(H) + P(E:not H) P(not H)

P(H:E) = (0.3 × 0.7)

(0.3 × 0.7) + (0.6 × (1 − 0.7))

P(H:E) = 0.21

0.21 + 0.18

P(flat battery:lights working) = 0.54
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Thus given the fact that the car lights are working the probability of the problem
being a flat battery has fallen from 0.7 to 0.54. The next step is to calculate the
probability of the battery being flat given that the car lights work but the engine
does not turn.

P(H:not E) = (1 − P(E:H)) P(H)

(1 − P(E:H)) P(H) + (1 − P(E:not H)) P(not H)

P(H:not E) = (1 − 0.1) × 0.54

(1 − 0.1) × 0.54 + (1 − 0.7) × (1 − 0.54)

P(H:not E) = 0.486

0.486 + 0.138

P(flat battery:lights working and engine not turning) = 0.78

So the probability of having a flat battery when engine isn’t turning but when the
lights are working is 0.78.
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SECTION 4: FUZZY LOGIC

Introduction

This section provides an introduction to fuzzy logic and its use within KBSs as an
approach to storing knowledge where uncertainty is a factor.

Objectives

By the end of the section you will be able to:

� evaluate the usefulness of fuzzy logic in dealing with uncertainty.

Fuzzy Logic

Fuzzy logic is a method of dealing with uncertainty in expert systems. The tech-
nique uses the same principles as the mathematical theory of fuzzy sets (Jamshidi,
1997). It attempts to simulate the process of human reasoning by allowing the
computer to behave in a method that appears to be less precise or logical than
activities normally ascribed to a computer.

The reasoning behind fuzzy logic is that many decisions are not true or false, black
or white, etc. Decisions actually involve uncertainty and terms such as ‘maybe’,
indicating that actions may or may not occur. The decision-making process may
not, therefore be particularly structured, but involve many partial decisions taken
without complete information.

Many people confuse uncertain reasoning with fuzzy reasoning. Probabilistic rea-
soning as in Bayes theorem is concerned with the uncertain reasoning about
well-defined events such as symptoms or illnesses. On the other hand, fuzzy logic
is concerned with the reasoning about ‘fuzzy’ events or concepts.

Fuzzy Logic Statements

Fuzzy logic allows a degree of impreciseness to be used for both inputs to, and
outputs from a KBS. For example, the following statements are valid in fuzzy logic
terms, but not in probability theory.

Input terms allowed:

� The temperature is ‘high’
� The vibration is ‘low’
� The load is ‘medium’.
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Outputs can be in terms of:

� The bearing damage is ‘moderate’
� The unbalance is ‘very high’.

Activity 6
This activity draws on examples of your own thinking patterns to help you
understand fuzzy reasoning.

Consider the temperature of the room you are in at the moment, without looking
at a thermometer, how would you characterise the temperature?

Consider someone you know quite well, how would you characterise their
height, given that you have never measured it?

Feedback 6
The chances are you might use terms such as cool, warm or freezing to describe
the room, or short or tall to describe your friend’s height.

When is a person tall, at 170 cm, 180 cm or 190 cm? If we define the threshold of
tallness at 180 cm, then the implication is that a person of 179.9 cm is not tall. When
humans reason with terms such as ‘tall’ they do not normally have a fixed threshold
in mind, but a smooth fuzzy definition. Humans can reason very effectively with
such fuzzy definitions and in order to capture human fuzzy reasoning we need
fuzzy logic.

An example of a fuzzy rule that involves a fuzzy condition and a fuzzy conclusion is:

IF holiday is long THEN spending money is high

Fuzzy reasoning involves three steps:

1. Fuzzification of the terms in the conditions of rules (i.e., inputs).
2. Inference from fuzzy rules.
3. Defuzzification of the fuzzy terms in the conclusions of rules (i.e., outputs).

Fuzzification

Using the technique of fuzzification, the concept ‘long’ is related to the underlying
objective term that it is attempting to describe; i.e., the actual time in weeks. As
an example, the term ‘long’ can be represented in this graph (see Figure 7.1).

The graph shows the degree of membership with which a holiday belongs to the
category (set) ‘long’. Full membership of the class ‘long’ is represented by a value
of 1, while no membership is represented by a value of 0. At 2 weeks and below
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Membership
value

2

1

0.5

Long

Length of holiday (in weeks)

3 4

FIGURE 7.1. Fuzzy concept ‘long’ related to length of holiday in weeks.

a holiday does not belong to the class ‘long’. At 4 weeks and above a holiday
fully belongs to the class ‘long’. Between 2 weeks and 4 weeks the membership
increases linearly between 0 and 1. The degree of belonging to the set ‘long’ is
called the confidence factor or the membership value. The shape of the membership
function curve can be non-linear.

The purpose of the fuzzification process is to allow a fuzzy condition in a rule to
be interpreted. For example, the condition ‘holiday = long’ in a rule can be true
for all values of ‘length of holiday’, however, the confidence factor or membership
value (MV) of this condition can be derived from the above graph. A 3-week-long
holiday is ‘long’ with a confidence factor of 0.5. It is the gradual change of the MV
of the condition ‘long’ with the length of holiday that gives fuzzy logic its strength.

Normally, fuzzy concepts have a number of values to describe the various ranges
of values of the objective term that they describe. For example, the fuzzy concept
‘hotness’ may have the values ‘very hot’, ‘hot’ and ‘warm’. Membership functions
of these values can be shown in Figure 7.2.

Temperature

Very hotHot

Membership
value

20°

1
Warm

0.5

30° 40° 50°

FIGURE 7.2. Membership functions for ‘warm’, ‘hot’ and ‘very hot’.
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Fuzzy Inference

Inference from a set of fuzzy rules involves fuzzification of the conditions of
the rules, then propagating the confidence factors (membership values) of the
conditions to the conclusions (outcomes) of the rules.

Consider the following rule:

IF (location is expensive) AND (holiday is long) THEN
spending money is high

Inference from this rule involves (using fuzzification) looking up the MV of the
condition ‘location is expensive’ given the price of food, etc. and the MV of
‘holiday is long’ given the length of the holiday. If we, as suggested by Zadeh,
take the minimum MV of all the conditions and assign it to the outcome ‘spending
money is high’ then from our example, if ‘location is expensive’ had a MV of
0.9 and ‘holiday is long’ had a MV of 0.7 we would conclude that the ‘spending
money is high’ with a MV of 0.7.

An enhancement of this method involves having a weight for each rule between 0
and 1 that multiplies the MV assigned to the outcome of the rule. By default each
rule weight is set to 1.0.

In a fuzzy rule base a number of rules with the outcome ‘spending money is high’
will be fired. The inference engine will assign the outcome ‘spending money is
high’, the maximum MV from all the fired rules. Thus from the rule above we
deduced that the spending money is high with a MV of 0.7. However, given the
rule below we may deduce that the spending money is high with a MV of 0.9.

IF (holiday is exotic) THEN the spending money is high

Thus, taking the conclusions of these two rules together we would deduce that the
spending money is high with an MV of 0.9.

In summary, fuzzy inference involves:

� Fuzzification of the conditions of each rule and assigning the outcome of each
rule the minimum MV of its conditions multiplied by the rule weight.

� Assigning each outcome the maximum MV from its fired rules.
� Fuzzy inference will result in confidence factors (MVs) assigned to each outcome

in the rule base.

Defuzzification

If the conclusion of the fuzzy rule set involves fuzzy concepts, then these concepts
must be translated back into objective terms before they can be used in practice.
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For a rules set including the ‘spending money is high’ rule above, fuzzy inference
will result in the terms ‘spending money is low’, ‘spending money is medium’ and
‘spending money is high’ being assigned membership values. However, in practice,
to use the conclusions from such a rule base we may need to defuzzify the con-
clusions into threshold figures for the actual amount of spending money we would
recommend someone take with them when going on holiday. To do this we need
to define the membership functions for spending money as shown in Figure 7.3.

Spending money

HighMedium

Membership

value

£100

1
Low

0.5

£300 £500

FIGURE 7.3. Membership functions for spending money.

One method of defuzzification is to place the MV generated by inference for each
fuzzy outcome at the point where the membership function has its highest value.
The required defuzzified value can then be calculated as the centre of gravity of
the three MVs.

Assuming that fuzzy inference results in MV of 0.3, 0.5 and 0.7 for the low, medium
and high spending money respectively.

The defuzzified value of ‘spending money’ is calculated as the centre of gravity of
the three MVs (viewed) as weights placed at £100, £300 and £500 (see Figure 7.4).

The expression for the defuzzified value is:

(HV low × MV low + HV med × MV med + HV high × MV high)

(MV low + MV med + MV high)

HV low, HV med and HV high are the values of spending money that are rec-
ommended at the highest membership values for low, medium and high spending
money holidays.

MV low, MV med and MV high are the MV values generated by fuzzy inference
for low, medium and risk of burst outcomes.
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Spending money

HighLow

Membership
value

£100

1

0.5

£300 £500

Medium

FIGURE 7.4. Membership values for spending money.

Applying the formula to the example gives

(£100 × 0.3 + £300 × 0.5 + £500 × 0.7)

(0.3 + 0.5 + 0.7)

Thus we have a defuzzified recommended spending money value of £353.

Activity 7
This activity will help you apply fuzzy logic to an additional example.

Imagine you are trying to determine the optimum temperature for a room.
There may be a range of temperatures that can apply to the room (e.g. 15◦C–
30◦C), although some of those temperatures will give the room the ‘correct’
temperature, while others will be too hot or too cold.

Each one (the ‘members’) of the set of all possible temperatures can be assigned
a value between 0 and 1 indicating how desirable that temperature actually is,
or the strength of membership of that particular temperature in the overall set.

Draw a diagram to indicate a membership set for ‘room temperature’ where
values of 19◦C–22◦C represent perfect room temperatures and temperatures of
17◦C and below, or 24◦C or above, or too cold or too hot to be considered as
room temperatures.
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Feedback 7
Your diagram should look similar to this:

17 18 19 20 21 22 23 24

0

1

Set values for ‘room temperature’

Strength of 
Membership

If we were to write a heating controller using normal logic we would need rules
to describe what actions to take under various conditions, e.g.

If temp < 17◦C turn heating on full.
If temp is 17◦C turn heating to 0.75 × full.
If temp is 18◦C turn heating to 0.5 × full.
If temp is ≥ 19◦C and ≤ 22◦C turn heating off.

We would need a similar set of rules for rooms that are too warm. Notice how the
heating gradually decreases as the room becomes warmer.

Using fuzzy logic we could replace many of these rules. Assuming we have three
membership sets, ‘cold’, ‘normal’ and ‘hot’ we could have rules such as the fol-
lowing:

If temp is ‘cold’ then heating is on full.
If temp is ‘normal’ then heating is off.

On first inspection you may think that according to these rules the heating would
be either on of off. However, as the membership values of ‘cold’ and ‘normal’
changes gradually so would the results of the rules. Thus, ‘heating on full’ may
have an MV of 0.8 and ‘heating off’ may have an MV of 0.2. Defuzzification
would take these two membership values and determine an actual setting for the
heater somewhere between off and full on.

When the room temperature reaches 19◦C ‘cold’ will have an MV of 0 and ‘normal’
will have an MV of 1 at which point the heater would be turned off.

Note that the temperature can still move within a narrow range, and no action is
required by the system. The temperature recording system displays some fuzziness
that is it will accept a range of temperatures as being correct, rather than have an
absolute figure showing the ‘correct’ temperature.
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Activity 8
This activity will help you recognise the value of a fuzzy logic approach to a
simple temperature control system.

One morning you turn on the shower and someone has left the temperature dial
on a setting that is too cold for you.

Describe the difference between your response and the response that a
computer-controlled device might make to adjust the temperature appropri-
ately.

Feedback 8
It is likely that you will make the water comfortable very quickly with little
trouble by acting without the precision that would need to be programmed into
a temperature control device. You will do this simply by turning the dial to
an appropriate position based on your experience and not worry if it is a few
degrees either way. A computer-controlled device on the other hand would
need to be told a precise range of temperatures that would be acceptable or not
acceptable and, depending on how hot or cold the water was, how quickly to
increase or decrease the temperature.

Fuzzy logic obviously requires some numerical data in order to operate, such
as what is considered significant error and significant rate-of-change-of-error,
but exact values of these numbers are usually not critical unless very respon-
sive performance is required in which case empirical tuning would determine
them.

For example, a simple temperature control system could use a single tempera-
ture feedback sensor whose data is subtracted from the command signal to com-
pute ‘error’ and then time-differentiated to yield the rate-of-change-of-error. Er-
ror might have units of degrees Celsius and a small error considered to be 2◦C
while a large error is 5◦C. The rate-of-change-of-error might then have units
of degrees/minute with a small rate being 5◦C/minute and a large one being
15◦C/minute.

The fuzzy logic approach incorporates a simple, rule-based ‘If X and Y then Z’
approach to solving a control problem based on the operator’s empirical experience
rather than attempting to model a system mathematically. For example, rather than
dealing with temperature control in precise terms like

� If the temperature is 35◦C and increasing by 3◦C/minute then reduce the tem-
perature to 30◦C.



Uncertain Reasoning 267

Instead, something like the following would be used:

� if (the water is too hot) and (the water is getting hotter) then (turn the heating
down quickly), or

� if (the water is too hot) and (the water is not getting hotter) then (turn the heating
down slowly).

These terms are imprecise and yet very descriptive of what must actually happen.
Fuzzy logic is capable of mimicking this type of behaviour and using fuzzy logic
reduces the number of rules required in the system.

The Strengths of Fuzzy Logic

The following factors offer advantages over other rule-based approaches to KBS
development:

� Fewer rules are required within a knowledge base. Rather than having a rule
for all possible situations, the degree of membership of a set can be determined
using fuzzy logic.

� Membership functions can be used to represent intuitive knowledge from ex-
perts. It is unlikely that knowledge can be expressed in terms of absolute values
or statements. Fuzzy logic allows vague or imprecise terms to be introduced
into the expert system to reflect the fuzziness of decision making in the real
world.

� Outputs can be in terms familiar to humans. We tend to work with imprecise
statements such as ‘I think there is a good chance it will rain today’ rather
than certainty (it will or will not rain). The outputs from the system are therefore
more understandable.

The Limitations of Fuzzy Logic

The use of fuzzy logic is limited by the following factors:

� Fuzzy logic still requires the writing of a large number of rules—many of which
are difficult to write and check due to the imprecise nature of the logic.

� Knowledge acquisition and representation problems apply, as in any KBS devel-
opment. However, in this case, the knowledge engineer may find it even more
difficult to elicit the required knowledge or write this in expert system format.

� A system based on fuzzy logic can be difficult to maintain and upgrade, especially
as the membership of classes may need amending over time.

� As with any rule-based system, systems based on fuzzy logic are not adaptive
in their pure form; additional programming in terms of feedback from example
inputs will be required if the system is to automatically update the rules.
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Summary

This section has provided an introduction to fuzzy logic and its use in dealing with
uncertainty in KBSs. You have learned how intuitive knowledge from experts can
be represented to reflect the fuzziness of decision making in the real world.

Self-Assessment Question

Which of the following could be applications for fuzzy logic?

� Autofocusing in cameras
� Regulating water temperature in shower heads
� Varying the length of time traffic lights are on green.

Justify your answers.

Answer to Self-Assessment Question

All of these activities could be applications for fuzzy logic.

In some situations, the camera may have to ‘guess’ which is the most important
element of a potential picture, and focus on this.

The temperature of water in a shower is affected by water pressure, which in turn
can vary depending on water usage in a building. Fuzzy logic can be used to
maintain a constant shower temperature by monitoring water usage in other parts
of the building.

The length of time traffic lights need to be on green to provide optimal traffic flow
will vary depending on the number of cars approaching the traffic lights. Fuzzy
logic can be used to try and determine the traffic flow in advance and therefore
amend the traffic light sequence accordingly.

Current Research Issues in Uncertain Reasoning

Reasoning with Uncertainty

Association for Uncertainty in AI
http://www.auai.org/

Certainty (or Confidence) Factors

UT ML Group: Uncertain Reasoning
http://www.cs.utexas.edu/users/ml/publication/uncertain-abstracts.html
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Probabilistic Reasoning

K-State KDD Lab: Probabilistic-Reasoning
http://www.kddresearch.org/Groups/Probabilistic-Reasoning/

Probabilistic Reasoning and Bayesian Networks
http://personales.unican.es/gutierjm/main/ai.html

Fuzzy Logic

FAQ: Fuzzy Logic and Fuzzy Expert Systems
http://www-2.cs.cmu.edu/Groups/AI/html/faqs/ai/fuzzy/part1/faq.html

Rule Chaining in Fuzzy Expert Systems
http://www.csee.usf.edu/∼hall/papers/fuzzes.pdf

A New Environment for Developing Fuzzy Expert Systems
http://www.iis.sinica.edu.tw/JISE/1999/199901 05.pdf

MEDEX—A Fuzzy Expert System
http://www.nrlmry.navy.mil/∼medex/tutorial/medex/fuzzy.html

FLINT toolkit
http://www.lpa.co.uk/fln.htm
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8
Hybrid Knowledge-Based Systems

Introduction

In Chapter 6, you encountered the concept of a hybrid system where a conventional
system and a knowledge-based system (KBS) can be coupled to achieve specific
aims by drawing on the features of both types of system. In this chapter we will
explore the rationale behind and the implications of coupling one KBS with another
KBS.

Objectives

By the end of this chapter you will be able to:

� Distinguish between symbolic systems and connectionist systems.
� Identify advantages of one type of KBS that can counterbalance a disadvantage

of another KBS.
� Describe a number of classification schemes of hybrid systems.
� Describe some example hybrid systems.

Types of Knowledge-Based Systems

Throughout the earlier chapters of this book you have learned about:

� Expert systems (ESs)
� Neural networks (NNs)
� Semantic networks
� Genetic algorithms
� Kohonnen self-organising maps
� Case-based reasoning systems
� Probabilistic reasoning systems
� Frame-based systems
� Fuzzy logic systems.

270
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Within this list, it is possible to distinguish two broad types:

� Symbolic systems
� Connectionist systems (sometimes referred to as sub-symbolic systems).

Symbolic Systems

Symbolic systems operate with symbolic representations of reality and in do-
ing so come close to representing, in a semantic manner, human cognitive
processing.

Connectionist Systems

Connectionist systems on the other hand, operate by taking advantage of often very
large numbers of connections between processing nodes. Such systems might
be considered an attempt to represent capacities such as skill and intuition and
cannot be expressed in normal human language, i.e., these systems use an implicit
knowledge representation scheme.

Activity 1
In the list of KBSs below, identify those which are symbolic and those which
are connectionist by completing the following table:
� Expert systems
� Neural networks
� Semantic networks
� Genetic algorithms
� Case-based reasoning systems
� Kohonnen self-organising maps

Feedback 1

Symbolic Connectionist

Expert systems Neural networks
Case-based reasoning systems Genetic algorithms
Semantic networks Kohonnen self-organising maps

Note that though semantic networks are clearly networks, their content and pro-
cessing are semantically explicit.
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Symbolic and Connectionist Systems Compared

For each of these types of system, it is possible to distinguish advantages and
disadvantages. For example, you saw how ESs require large amounts of efforts
to write the rules on which they depend for their operation. Similarly, a case-
based reasoning system might require a large number of cases to be written and
stored in order to anticipate new scenarios and provide assistance to decision
making. However, while ESs require significant development time they are ex-
pected to provide accurate output and to be able to explain how that solution was
derived.

On the other hand, you also saw how genetic algorithms can solve large, almost
intractable, problems but that their output can only be relied upon to be merely
adequate—not necessarily optimal. For example, a genetic algorithm tasked with
generating solutions to a timetabling problem, may generate many acceptable
solutions but be unable to find the best possible solution.

You also saw how NNs can learn previously unknown relationships in data pre-
sented and are relatively noise tolerant. However, the knowledge is encoded as
weights within a network and thus is not open to inspection by humans.

This consideration of the relative advantages and disadvantages leads to a recogni-
tion that some of the disadvantages of symbolic systems are not shared by connec-
tionist systems and vice versa. It does not take a huge leap of inspiration therefore,
to consider the possibility that by applying one or more of each type of system to a
specific problem, the disadvantages of one can be cancelled out or at least reduced
by the advantages of the other.

Works by Dreyfus and Dreyfus (1987) and Smolensky (1988) have highlighted
additional relative advantages that can be taken into account when considering a
hybrid approach.

Advantages of connectionist systems include:

� Learning capabilities
� Tolerance to missing or noisy data
� Massive parallelism in relation to processing
� Graded representation.

Advantages of symbolic systems include:

� Clarity of representation and processing
� Ease of specifying processing steps
� Processing precision.
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Activity 2
Now that you have seen how the advantages of the different KBSs vary de-
pending on whether they are symbolic or connectionist, suggest why it might
be useful to combine an ES with a NN such that the combined features com-
plement each other.

Feedback 2
You may have been able to recognise that by combining an ES and a NN, it
might be possible to overcome the limitations of either.

Expert systems cannot learn and cannot process sensory data. However, if we
can combine an ES with a NN we can overcome both of these limitations.

Similarly, NNs cannot explain their reasoning process. By combining a NN
with an ES we may be able to overcome this limitation also.

An Example Hybrid NN/ES

One simple way of combining a NN and an ES is to have two separate component
systems with the outputs from one system feeding into the other. If a NN was used as
an input to an ES this would provide an overall system which behaved like an ES but
with the advantage of being able to process, and identify patterns in, sensory data.

Imagine a scenario where an ES is being developed to monitor a patient in intensive
care and automatically administer drugs where appropriate. One of the inputs is
a patient’s heartbeat and the ES needs to know if the heartbeat is strong or weak
as this will have an impact upon the decisions it makes. However, the ES cannot
process sensory data. One option to overcome this would be to write a long and
complex procedural algorithm to process the heart signal and to return an answer
of ‘strong’ or ‘weak’ as appropriate. Another much simpler solution would be to
train a NN to monitor the heartbeat and to decide if the signal is ‘strong’ or ‘weak’,
‘regular’ or ‘irregular’. The outputs from the NN would then feed directly into the
ES (Figure 8.1).

Regular or
irregular

Medication

Other
patient
data

Heart
signal

Strong or
weakA NN to

monitor heart
signals

An ES to diagnose
conditions and
administer medication

FIGURE 8.1. A loosely coupled hybrid knowledge-based system.
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Having decided to integrate a NN with an ES let us consider the possibility of
widening the scope of the NN component. Since the NN is monitoring the patient’s
heartbeat it could be decided that the NN should trigger an alarm if a sudden change
is detected. Clearly, heart monitors already signal an alarm if the heart stops but
using a NN an alarm could be triggered much sooner, assuming the NN could learn
to distinguish important changes from normal fluctuations. However, what if the
heartbeat changed in response to the medication administered by the ES? The NN
could only recognise that this was an expected change if it knew what medication
was administered by the ES. Thus, the NN’s outputs are needed by the ES and the
ES’s outputs are needed by the NN (see Figure 8.2).

ALARM

Regular or
irregular

Medication

Other
patient
data

Heart
signal

Strong or
weakA NN to

monitor heart
signals

An ES to diagnose
conditions and
administer medication

FIGURE 8.2. A tightly coupled hybrid Knowledge-based system.

We can see that the two separate component systems, in the example system above,
are still clearly distinguishable. But is there a need to create a component that it is
neither an ES nor a NN but has characteristics of both?

An Integrated Hybrid KBS

Consider the problem of identifying animals from photographs. This application
sounds like an obvious choice for a NN system and indeed a NN could be trained
to recognise a range of animals from photographs (see Figure 8.3).

However, such a network would be unable to explain its reasoning. If an ES came
to the conclusion that the animal was a cat it could explain its reasoning, at least
in part, by showing the appropriate rule, e.g.

If animal is small, fluffy and had four legs then animal is a cat.

A NN cannot explain its reasoning because we have no idea what concepts the
nodes in the hidden layer represent. However, imagine a structure which is neither
an ES nor a NN but instead has properties associated with both of these (see
Figure 8.4).
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FIGURE 8.3. A neural network trained to recognise animals.

On first glance the system above would appear to be a NN. However, it is one
where we know what concepts the inner nodes represent. This can be achieved by
training the system one node at a time. Instead of training the whole network to
recognise any animal, one node is trained to spot six-legged creatures, another to
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FIGURE 8.4. An integrated hybrid expert system/neural network architecture.
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recognise small creatures and another to recognise wings, etc. Finally, the nodes
in the inner layer are connected to the outer layer. This can either be done in one
of two ways.

1. Links are made by specifying rules to represent a human expert’s knowledge,
as in an ES. For example, the links between fluffy and cat, small and cat,
and four legs and cat (as shown in Figure 8.4) represent the rule specified
earlier.

2. The links can be learnt by training the outer layer as any NN is trained.

Irrespective of how the links are made to the outer layer we now have a network
that displays properties of a NN and properties of an ES. The system can be trained,
can process visual data and can explain its reasoning (by identifying inner nodes
that caused the output). This is an example of a fully integrated hybrid system.

Integrating Symbolic and Connectionist Systems

Having now explored some basic ideas we will now look at how to integrate
symbolic and connectionist components in a hybrid architecture. Considerations
when integrating symbolic and connectionist systems are suggested by Sun (2002):

� Should hybrid architectures be modular or monolithic?
� For modular architectures, should different knowledge representation schemes

be used in different modules or the same representation schemes throughout?
� How do we decide whether the representation of a particular part of an architec-

ture should be symbolic or connectionist?
� What are the appropriate representational techniques for bridging the hetero-

geneity likely in hybrid systems?
� How are representations learned in hybrid systems?
� How do we structure different parts to achieve appropriate results?

We will look at some of these aspects as we explore a number of approaches to
classifying hybrid architectures.

Classifying Hybrid Systems

Several schemes have been applied to classifying and describing hybrid architec-
tures. Three schemes will be explored here. These relate to:

1. the number of modules of the different components
2. the tightness of the integration between the symbolic and connectionists com-

ponents themselves
3. the configuration of the modules and the conceptual understanding of the asso-

ciated processing.

As always, classification schemes will display areas of overlap.
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Single Module and Multi-Module Architectures

One NN coupled with one ES would be an example of a single module architecture.
However, there may be advantages in including two or more NN modules in
a hybrid system. In such multi-module architectures, it becomes necessary to
describe whether the multiple NN modules, for example, are replications of a
single structure or modules of differing structure. The former can be referred to
as homogeneous and the latter as heterogeneous systems.

Integration in Hybrid Systems: Coupling

The term coupling refers to the degree of integration of the symbolic and con-
nectionist components of a hybrid system. Three degrees of coupling have been
described in the literature:

� Loose coupling
� Tight coupling
� Fully integrated.

Loose Coupling

A loosely coupled hybrid architecture has separate symbolic and connectionist
modules. The control flow is sequential in the sense that processing has to be
finished in one module before the next module can begin. Only one module is
active at any time, and the communication between modules is unidirectional.

An architecture illustrating very loose coupling has been described in a model
for structural parsing within the SCAN framework. First, a chart parser is used to
provide a structural tree representation for phrases or sentences. Triples of ‘noun
relationship noun’ are then used as input for several feedforward networks which
produce a plausibility measure of the relationship. Based on this connectionist out-
put, a symbolic restructuring component changes the original tree representation
if the semantic feedforward networks indicate that this is appropriate.

This system has a loosely coupled hybrid processing architecture since there is
a clear division between symbolic parsing, connectionist semantic analysis and
symbolic restructuring. Only if the preceding module has finished completely,
will the subsequent module begin processing (Wermter, 1995).

Tight Coupling

A tightly coupled hybrid architecture contains separate symbolic and connectionist
modules, and control and communication are via common internal data structures
in each module that allow bidirectional exchanges of knowledge between two or
more modules. Processing still takes place in a single module at any given time,
but the output of a connectionist module can have direct influence on a symbolic
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module (or vice versa) before global processing is complete. Feedback between
two modules is therefore possible.

A tightly coupled hybrid architecture allows multiple exchanges of knowledge
between two or more modules. Tight coupling has the potential for more powerful
interactions. Such architectures however, need more complex interfaces in order
to support the dynamic control between symbolic and connectionist modules.

Fully Integrated

In a fully integrated hybrid architecture—the most advanced of the hybrid process-
ing architectures—there is no discernible external difference between symbolic
and connectionist modules, since the modules share an interface and are embedded
in the same architecture. The control flow may be parallel and the communication
between symbolic and connectionist modules is via messages. Communication
may be bidirectional between many modules—though not all possible communi-
cation channels need to be used.

Unified, Transformational and Modular Hybrid Systems

The third classification scheme (McGarry et al., 1999)—categorises hybrid sys-
tems as being either unified, transformational or modular.

Unified Hybrid Systems

Unified hybrid systems are those where all processing is implemented by NN
elements, i.e., though the system is a hybrid, the components are all different NNs.

Transformational Hybrid Systems

Transformational hybrid systems have the ability to insert, extract and refine sym-
bolic knowledge within the framework of a NN. This is achieved by the use of
both symbolic and connectionist components working to achieve a specific task.

Modular Hybrid Systems

Hybrid systems that are modular in nature and as such might contain more than
one type of each component. In this way, if additional processing is required of a
type that can be done by a NN, additional NN modules can be added to the hybrid
until the desired level of processing is achieved.

Examples of KBS/KBS (AI/AI) Hybrid Systems

MACIE

The earliest neural expert system was MACIE (MAtrix Controlled Inference
Engine) developed by Stephen Gallant as long ago as 1988.
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Neural expert systems attempt to reduce the disadvantages of the implicit knowl-
edge representation in pure NNs. They enrich NNs with heuristics which analyse
NNs to cope with incomplete information, to explain conclusions and to gener-
ate questions for unknown inputs. This means that NNs are endowed with other
functionalities so that they have all the required features of ESs.

MACIE is based on a feedforward NN, in which neuron outputs are spin values
(±1) produced by applying a threshold to the weighted input sum. In addition,
hidden neurons coincide with output neurons so their purposes are application
specific. The inputs to the system represent user’s answers to questions which may
have only ‘yes’ or ‘no’ answers, encoded by 1 or –1 respectively. An unknown
state is encoded by 0. The neural knowledge base is created from training patterns
which compute relevant weights. All states of neurons (including hidden neurons)
in the feedforward network need to be prescribed because the algorithm works
only for a single layer of neurons. In the case where all inputs are known, MACIE
computes all the outputs. If some input facts are unknown, MACIE can still reach
a conclusion and determine whether there is a chance of an output value change,
should unknown inputs become known.

MACIE can also provide a simple justification of inference by generating IF-THEN
rules. If the user asks for an explanation about the particular value of an output
neuron, the network looks for the minimal subset of the unit’s incident neurons
which ensure its state, regardless of the remaining ones.

f SC-NET

In fSC-Net, a distributed connectionist representation of cells connected by links
is used to represent symbolic knowledge. Rules may be directly encoded in the
connectionist network or learned from examples. The learning method is a form of
instance-based learning in which some of the individual instances in the training
set are encoded by adding structure to the network and others cause modifications
to weights.

Learning in fSC-Net only requires a single pass through the training data and it is
therefore a true incremental learner. New hidden units are automatically recruited
and the need for parameter tuning can be eliminated. Rules can be extracted after
processing and loaded back into the system, thereby creating a system capable of
supporting knowledge refinement.

KBANN

KBANN (Towell and Shavlik, 1990), integrates propositional calculus with neural
learning. A set of rules designates a domain theory which is partially correct. This
set is integrated into a NN as training material, thus refining the rules. Finally, the
rules are extracted from the network—though this final step is not an official part
of the KBANN algorithm.
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The authors of KBANN have established a correspondence between the domain
theory and a NN which appears in the following table.

Domain theory Neural network

Final conclusion Output units
Intermediate conclusions Hidden units
Supporting facts Input units
Antecedents of a rule Highly weighted links

KBANN has been compared to empirical learning systems, i.e., those that learn
only from data or from theory and data. KBANN has been claimed to generalise
better than other empirical-based methods but exhibits the following limitations:
� It cannot handle rules with variables or cycles.
� There is no mechanism for handling uncertainty in the rules.
� The symbolic meaning of the initial NN is ignored by KBANN, which results

in long training times.
� There is no mechanism for dynamically changing the topology of the NN.

Activity 3
Search the Internet for the following examples of hybrid systems and note
what different KBSs they incorporate in their hybrid structure as well as the
knowledge domain in which they are used.
� GANNET
� SCREEN
� CPD (Connectionist Deterministic Parsing)
� GFMM (General Fuzzy Min Max)

Feedback 3
You should have been able to find most of the following:
� GANNET uses a combination of genetic algorithm and neural network ap-

proaches in the context of information retrieval.

GANNET performs concept (keyword) optimisation for user-selected docu-
ments during information retrieval using genetic algorithms. It then uses the
optimised concepts to perform concept exploration in a large network of re-
lated concepts through the Hopfield net parallel relaxation procedure. Based on
a test collection of about 3000 articles, GANNET helped identify the underlying
concepts that best describe user-selected documents.

However, you may also have located: Hancock, P.J.B., GANNET: Design of
a neural net for face recognition by Genetic Algorithm, Proceedings of IEEE
Workshop on Genetic Algorithms, Neural Networks and Simulated Annealing
applied to problems in signal and image processing, Glasgow, 1990.
� SCREEN was developed for exploring integrated hybrid processing for spon-

taneous language analysis.
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One main architectural motivation is the use of a common interface between
symbolic and connectionist modules which are externally indistinguishable. In
SCREEN, the many connectionist and symbolic modules have a common inter-
face and can communicate with each other in many directions. From a module-
external point of view it does not matter whether the internal processing within
a module is connectionist or symbolic. This architecture therefore exploits a
full integration of symbolic and connectionist processing at the module level.
� CDP is a system for connectionist deterministic parsing in language analysis.

While the choice of the next action is performed in a connectionist feedforward
network, the action itself is performed in a symbolic module. During the process
of parsing, control is switched back and forth between these two modules, but
processing is confined to a single module at a time. Such a tightly coupled
hybrid architecture has the potential for feedback to and from modules.
� GFMM– a General Fuzzy Min Max neural network for decision support for

the operational control of industrial processes.

You will find many more examples on the Internet of hybrid systems that have
been applied to a huge range of sophisticated problems.

Summary

In this chapter you have seen how obtaining the full benefits of the use of KBSs
can be achieved by a ‘using the right tools for the job’ approach and mixing and
matching them as the application dictates. Hybrid systems, in which both symbolic
and connectionist approaches are combined can be particularly effective where the
combination overcomes the limitations of individual approaches.

Self-Assessment Question

Look at the following diagrams and label them appropriately as either:

� Full integrated transformational
� Tightly coupled unified
� Loosely coupled modular

NN = Neural Network
ES = Expert System

Diagram 1

NN NN NN
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Diagram 2

ES NN

NN

Diagram 3

ES NN

Answer to Self-Assessment Question

You should have been able to recognise that:
Diagram 1 represents a tightly coupled unified hybrid system.
Diagram 2 represents a loosely coupled modular system.
Diagram 3 represents a fully integrated transformational system.
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