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Abstract
The biggest difference between video-based action recognition and image-based action recognition is that the former has an 
extra feature of time dimension. Most methods of action recognition based on deep learning adopt: (1) using 3D convolu-
tion to modeling the temporal features; (2) introducing an auxiliary temporal feature, such as optical flow. However, the 3D 
convolution network usually consumes huge computational resources. The extraction of optical flow requires an extra tedious 
process with an extra space for storage, and is usually modeled for short-range temporal features. To construct the temporal 
features better, in this paper we propose a multi-scale attention spatial–temporal features network based on SSD, by means 
of piecewise on long range of the whole video sequence to sparse sampling of video, using the self-attention mechanism to 
capture the relation between one frame and the sequence of frames sampled on the entire range of video, making the network 
notice the representative frames on the sequence. Moreover, the attention mechanism is used to assign different weights to 
the inter-frame relations representing different time scales, so as to reasoning the contextual relations of actions in the time 
dimension. Our proposed method achieves competitive performance on two commonly used datasets: UCF101 and HMDB51.

Keywords  Action recognition · Multi-scale spatial–temporal feature · Attention mechanism

1  Introduction

Video understanding [1] is an important area of computer 
vision, and one of the most important is the human action 
recognition. The action in a video is composed of a series 
of processes from beginning to end and in between, which 
is quite different from a still image [2] frozen at a single 
moment. Many actions in human’s view to be classified by 
observing them change from beginning to end, and the same 
is true for computers. This brings a problem for action rec-
ognition in video: how to effectively construct a temporal 
feature representation to enable the computer to perform 
video action recognition task better.

Video data can be very intuitive explained as a 3D spa-
tial–temporal signal [3, 4], some solutions [5–7] trying to 

find different forms of spatial–temporal fusion features. 
Although these methods’ result is remarkable for some 
action recognition task, for more complex and time-costing 
longer action its’ performance will drop a lot due to the dif-
ferences between the same action category and the similari-
ties and fuzziness between actions. There are a number of 
factors that can lead to big inter-class differences in actions 
such as appearance features, differences and variations in the 
people/objects that make up the motion, lighting and imag-
ing conditions, self-occlusion, and cluttered backgrounds. 
To solve these problems, some methods [8, 9] extract the tra-
jectory [10] of the points of interest from the video sequence 
to represent the discriminative spatial region. But overall, 
the challenge of recognizing more complex human action 
is not well addressed.

In the growing environment of deep learning [11, 12], 
3D CNN [13] directly extends the existed 2D CNN network 
structure [14] to the 3D spatial–temporal domain, and then 
learns the convolution kernel parameters in the spatial–tem-
poral domain. Karpathy et al. [15] learns the hierarchical 
structure composed of multi-layer convolution kernel, and 
to learn the long-range motion features through early fusion, 
late fusion and slow fusion. It may be due to the lack of 
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sufficient training video data [16] (compared with a large-
scale image dataset [17]), the complexity and difficulty of 
3D CNN are increased. The performance of 3D CNN is not 
particularly good in learning completely semantic informa-
tion [18], and the recognition result of two-stream CNN net-
work is often better than that of 3D CNN. In fact, compared 
with 2D images which only need to obtain spatial features 
[19], 3D CNN needs a huge amount of training data for 
network training to learn the features of an extra dimension 
through 3D convolution kernel, which brings an additional 
burden for calculation.

Two-stream CNN structure [20] uses an additional CNN 
stream to learn the temporal feature, which takes the optical 
flow calculated from the continuous video frame sequence as 
input. Using optical flow to capture the motion features, the 
two-stream CNN structure is not very effective in modeling 
the motion feature in long range, but it can more intuitively 
understand the semantic information at the temporal level. 
Optical flow information calculates the pixel vector move-
ment between adjacent frames, which can intuitively dis-
play the motion information between adjacent frames, but 
its calculation is cumbersome and requires additional storage 
space, which is not conducive for end-to-end training.

Video human action recognition is not only dependent 
on one aspect of appearance or motion features, but should 
be recognized through both, we hope that the network can 
judge the occurrence of actions through both appearance and 
temporal relationship like humans. In addition, the existing 
methods often ignore the problem of feature imbalance in 
the time dimension. The weights of semantic information 
in different time points are different, so the frame feature at 
different moments should be treated differently. The con-
volutional neural network is superior in extracting image 
features, but there are still have challenges in inferring tem-
poral relations.

Based on the above considerations, in this work, we 
propose a multi-scale attention spatial–temporal features 

network based on improved SSD method (MAST). We pro-
cess video data in a manner similar to TSN [21], sample the 
video at equal intervals, and extract features from the sam-
pled frames. Unlike TSN, we just use RGB images as input, 
this greatly saves computing resources for video action rec-
ognition. We observe the SSD method [22] in the field of 
object detection, which extracts features of different scales 
to detect object, making good use of the appearance infor-
mation in the image. In MAST, we perform self-attention 
and inter-frame relationship calculations on frame features 
on multiple feature scales to obtain appearance features and 
motion features at the same time. With the purpose of dis-
tinguishing the importance of different frames, we further 
added a sampling attention module, and calculated an addi-
tional sampling loss based on the output of this module. This 
allows the network to focus on more discriminative frames 
and further improve the recognition accuracy.

In general, our works are summarized as follows:

1.	 We improved the SSD model framework, added atten-
tion modules and temporal feature modeling capabili-
ties based on multi-scale features, so that the model can 
perform video action recognition without using optical 
flow, which improves recognition efficiency.

2.	 Our network prefers to focus on the discriminative fea-
ture of a video in the time dimension. By reasoning the 
temporal relation between the inter-frames and pay more 
attention to the discriminative frames, our network can 
effectively improve action classification accuracy. The 
entire network structure showed in Fig. 1.

2 � Related work

Research on video action recognition has made great pro-
gress in recent years. Before the development of deep learn-
ing, most methods used for video action recognition are 

Fig. 1   The overall framework of MAST. The network using ResNet50 as its backbone, and using three additional convolutional layers and atten-
tion and temporal modules to replace the layer after conv5_x. The more details about attention and temporal module can be found in Fig. 2
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traditional feature extraction methods in image recognition, 
such as HOG [23], HOF [24], etc., usually after the hand-
crafted feature extraction following a classifier for the clas-
sification of features. There also exist some methods have 
quit excellent performance such as the IDT [8], regarding 
the densely trajectory as a good video representation, but it’s 
difficult to gain competitiveness in terms of efficiency. With 
the popularity of deep learning, the image features obtained 
by convolution neural network shows excellent ability, so 
more and more researchers hope that using convolution neu-
ral network to extract features of a video to cope with the 
action recognition task. Different from the image classifica-
tion, the network building in the video action recognition 
task needs to have the ability to capture the temporal features 
[13]. using 3D convolution kernel construct 3D CNN net-
work makes originally applied to RGB image convolution 
operation adding a dimension. Tran et al. [25] constructs a 
general and simple 3D CNN model dealing with large-scale 
data, and achieved remarkable performance. The methods 
based on 3D CNN also cause a problem: using 3D convolu-
tion kernel for capture the temporal features lead to an explo-
sion in computation. Therefore, there is also spawned some 
variant of convolution kernels, such as R(2 + 1)D [26], P3D 
[27], which the convolution can be divided into processing 
space dimension and time dimension separately, effectively 
reducing the amount of calculation. Li et al. [28] has chosen 
to making 3D convolution process on video frame sequence 
from three different perspectives, sharing the convolution 
kernels in the view of the three parameters, and thus reduced 
the number of parameters.

Another popular capturing temporal features method is 
the two-stream network put forward by Simonyan [20]. Two-
stream network consists of two convolution neural network, 
its space steam process on the RGB images to extract appear-
ance feature, while the temporal stream processes the optical 
flow representing motion features to capture the temporal 
feature of video. The two streams extract the features of 
video separately and classify it, then fuse the classification 
score of two streams to obtain the final classification results, 
it also illustrates the effectiveness of optical flow in video 
action recognition. TSN [21] sampling the whole video get 
several video segments, each segment input to two-stream 
network to extract the features of the two streams, then fuse 
the classification result of each segment. Peng et al. [29] 
observed a situation in two-stream network that the recogni-
tion result of one stream success and the other stream failure, 
in this case the final recognition result is always inaccurate, 
so the two-stream collaboration methods add collaborative 
learning and attention module makes the features of the two 
streams interaction to achieve a more accurate classification 
result. Carreira et al. [30] making the convolution kernels 
of two-stream network structure inflated to 3D convolu-
tion kernels, achieved the optimal results in large datasets 

kinetics. Sun et al. [31] also proves that the optical flow cue 
is helpful to the video action recognition. Due to the opti-
cal flow needs to be extracted in advance and needs to be 
stored in an extra space, some methods considering regard 
the extraction of optical flow as a part of the whole network. 
Different from the traditional optical flow extraction method, 
[32] consider using CNN to predict optical flow. Zhu et al. 
[33] directly joint the optical flow to the front of the two-
stream construct, achieving end-to-end training. Recently, to 
find the better representative video time information clues, 
Piergiovanni et al. [34] recently proposed a new temporal 
feature which can replace the optical flow, also has obtained 
the good effect.

For the mentioned methods above, however, most of them 
lack of the ability of modeling long-term feature sequence, 
they often face to the datasets which can be classified by 
the appearance feature or the short-term temporal feature, it 
almost would not treat the feature in different time dimen-
sion differently. The video action recognition network should 
have the ability that paying attention to the discriminative 
frame which including more information of temporal. In 
video action recognition task, compared to the methods 
specialize in dealing with long-term sequence data such as 
recurrent neural network [35] and long–short-term memory 
network [36], the attention mechanism [37] is more effective 
and convenient to extract the relative important features of 
sparse sample, capture the relation between features. The 
purpose of [38] is finding discriminative frames in a frames 
sequence of video frames. Liu et al. [39] select the discrimi-
native frames based on the improved frame selection mode, 
its use is a blend of supervised pyramids of light flow move-
ment features to look for interested.

To solve the VQA task, a relational reasoning network 
[40] is proposed, it also define the state relation of object. 
[41] reason the relationship between frames of multiply 
temporal scales based on the relation network, which has 
a strong temporal reasoning ability, but its performance in 
inferring appearance features is very ordinary. SSD method 
[22] in object detection field extract features of multi-scales 
to detect objects in the image, for considering the diversity 
of time cues in features of different scales, we choose to 
improve the method based on SSD. We consider that dif-
ferent motion cues can be captured in features of different 
scales, so we use the self-attention module and the inter-
frame relationship inference module to perform temporal 
modeling.

3 � Method

Now most method of modeling temporal clues are taken 
as well as the strategy of modeling the appearance feature: 
take the temporal clue as the input of a network or using 
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3D convolution kernels to extract the temporal features. 
These methods require additional computing resources 
while not paying attention to the temporal relationship of 
features at different scales and the differences in features 
at different time points. In this section we introduce the 
multi-scale attention spatial–temporal features network, 
in Sect. 3.1 we will introduce how to sample video frames 
to get a long-term video representation. In Sect. 3.2, we 
will detail the method of performing self-attention and 
temporal modeling on multiply feature scales. Finally, the 
method of temporal reasoning on the final spatial–tempo-
ral features and the method of assigning different weights 
to features at different moments are introduced in Sect. 3.3 
(Table 1).

3.1 � Video‑level feature extraction

For a video include an action with a duration of a cer-
tain time, if a small continuous frame is simply selected 
from it and sent to the convolutional neural network for 
feature extraction, then the information obtained is only 
the information of the nearby domain at a certain instant 
in an action. But if choose a long range of continuous 
stack frames for feature extraction, due to the changes 
of action will not happen according to the frame is big-
ger, the result of feature extraction will contain a lot of 
redundant information, which will lead to additional 
calculate cost. We hope to get a feature representation 
that contains the action information from it start to fin-
ish, meanwhile, it will not mingle too much redundant 
information. So for a video V  , we will be equally divided 
into segments, V =

[

V0,V1 … , VN−1

]

,we using the N video 
snippets to get N  images to construct an ordered frames 
sequence and using 

(

F0,F1, … , FN−1

)

 , Fn is a video 
frame extracted from the corresponding video segment 
Vn . Then sending the frames sequence into the backbone 
convolutional neural network, we can obtain the feature 
sequence 

(

T0, T1, … , TN−1
)

 representing the whole video. 
Here we consider the more stable feature extraction pro-
cess, we choose to use a backbone network similar to SSD 
as our feature extraction network, but different from the 
VGG16 [42] used in the SSD, we choose ResNet50 and 

add additional layers to replace the original avg pooling 
layer and fc layer to consistent with the model in SSD.

3.2 � Self‑attention and temporal modeling 
on multi‑scales

When human observe the occurrence of an action, they often 
observe two aspects: what is happening and at which tem-
poral point the action occurs. We hope that the video action 
recognition network also has the ability to observe these two 
aspects. Based on the SSD method, we add a self-attention 
module and a temporal feature module between the layers 
of the backbone network. Since the receptive field sizes of 
the feature maps obtained from different layers are different, 
we consider that the temporal features of the feature maps on 
different scales are different. We want to capture the motion 
information of human in the video at different scales, so 
we establish temporal features on multi-scales. This is dif-
ferent from the optical flow that only captures the motion 
cues of the original image and then performs the convolution 
operation. The specific self-attention module and temporal 
feature module are shown in Fig. 2. Inspired by the non-local 
neural network, we use the non-local block as our feature 
self-attention module. In the self-attention module, T  is the 
feature map sequences obtained by a certain convolutional 
layer, the self-attention module receives T  as the input to 
perform self-attention operation: SA

(

Xi,Xj

)

 , where Xi is the 
pixel value of a certain point of the input feature, Xj is the 
pixel value of all the possible positions of features. There are 
many fusion forms in the non-local block, we set the Embed-
ded Gaussians model in our self-attention module. We define 
the output of the self-attention module is:

C(T) means the normalized factor. Using the Embedded 
Gaussians model to describe self-attention fusion is:

we can express it followed the form in [44] as

In the temporal feature module, we only use 2D convolu-
tion kernels to capture the temporal representation between 
frames. For the feature sequence T with size N × C × H ×W , 
we first reduce the number of channels to 1/16 of the origi-
nal, then the feature Tn+1 of the latter frame is subjected 
to a 2D convolution operation and then subtracted from 
the feature Fn of the previous frame. The module captures 
the motion cues between the two frames by calculating the 

(1)Yi =
1

C(T)

∑

∀j

SA
(

Xi,Xj

)

g
(

Xj

)

,

(2)SA
(

Xi,Xj

)

= e�(Xi)
T
�(Xj),

(3)Tatt = softmax
(

TTWT
�
W�F

)

g(T).

Table 1   Notations of variables

T
n

A frame in a sequence of frames
Y
i

Features calculated using self-attention
T

′

n
Temporal feature calculated from two adjacent frames

R
m

The relationship between the inferred spatial–temporal features
�
i

The weight of a temporal relationship in the time dimension
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pixel offset between the two frames, the formula is shown 
as follow:

By calculating the motion information between N frames, 
the network obtains N − 1 temporal feature sequences. To 
be consistent with the original input size, we add a feature 
with all zeros at the end of the feature sequence to represent 
the motion information of the last time point. Finally, we 
restore the number of channels to ensure consistency with 
the input. After fusing the features obtained from the self-
attention module with the features obtained from the tem-
poral feature module, we then make a skip-layer connection 
with the original input features to obtain the spatial–tem-
poral feature representation with attention and sent to the 
subsequent network:

3.3 � Temporal relation with attention weights

For a video frame sequence, more attention should be paid 
to the logical relationship between before and after of the 
action. Although some actions which contains obvious vis-
ual features (such as basketball-shooting and archery) can 
be recognized by its important visual features (such as the 
basketball for basketball-shooting, the bow and arrow for 
archery), but in real life a lot more action need to understand 

(4)T
�

n
= Conv

(

Tn+1
)

− Tn.

(5)T = T + T
�

+ Tatt.

the temporal relations of its occurrence, such as judging 
whether to insert the USB to the computer or pull it from 
computer, we cannot determine it by only USB image fea-
ture. We reason the inter-frame relation which contains the 
long-term video spatial–temporal information. We consider 
to reason the inter-frame of multi subset temporal scales. 
First, the temporal relation between two frames which con-
tain long-range spatial–temporal information can defined as

for each Tm represent the frame feature fusing multi-scale 
spatial–temporal information we extract from the video. f� 
and g� is the reasoning method for two frames, here we adopt 
the MLP (Multilayer Perceptron) as our reasoning method. 
Spontaneously, we can extend the temporal relation between 
two frames to three frames even multi frames:

For any scale m < N , N frame features contain several 
relations of m frames. For ease of calculation, we only ran-
domly selected k relations which the temporal scale is m 
from N features. Considering the number of frame is dif-
ferent in different temporal-scale temporal relation, and the 
sample interval we sampled is different, we hope to pay 
attention to the discriminative temporal point in an action, 

(6)R2 = f𝜙

(

∑

m<n

g𝜃
(

Tm, Tn
)

)

,

(7)R3 = f𝜙

(

∑

m<n<l

g𝜃
(

Tm, Tn, Tl
)

)

,

Fig. 2   The attention and tempo-
ral module consists of two parts: 
self-attention module focuses on 
the salient areas in the feature 
sequences (including both 
spatial and temporal dimen-
sion) and the temporal feature 
modeling module captures the 
motion cues between frames
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so we give every temporal relation a corresponding weight 
of attention �i , then we can obtain the attention temporal 
relation by multiplying �i with corresponding different tem-
poral scales, add the attention temporal relation with differ-
ent temporal scale and then we can using a SoftMax function 
to get the action classification result:

we use two fully connected layer and a ReLU layer to get the 
module generating the attention weights �i , and the using a 
sigmoid function to restrict it to [0,1]:

These weights correspond to temporal relations at dif-
ferent scales, focusing on more discriminative inter-frame 
temporal relations. In our work the final loss Lf  consists of 
two parts: classification loss Lc and temporal scale attention 
loss Lt , the calculation is as follows:

� is the coefficient used to weigh the proportion between 
the two losses. Among them, we use the finally obtained 
prediction P to calculate the classification loss Lc between 
the predicted value and the ground-truth Y  , and we use the 
cross-entropy loss function as the loss measurement method. 
The formula is shown as follows:

where CE is the cross-entropy loss function. For the tem-
poral scale attention loss Lt , we obtain it by calculating the 
L1 loss of the vector � formed by the attention weight �i of 
different temporal scales, which is shown as:

Through Lt , we can effectively find more noteworthy 
inter-frame relationships, that is, key frames that are more 
representative of the entire video.

4 � Experiment

4.1 � Datasets

We use widely used datasets UCF101 [45] and HMDB51 
[46] to validate our MAST method. UCF101 is a widely 
used action recognition dataset which consists of 13,320 vid-
eos and contains 101 different categories of human action 
recognition, each category of action contains videos of 25 
different people. The content of this dataset is very diverse, 

(8)P = softmax

(

N−1
∑

i=2

�iRi

)

,

(9)�i = sigmoid
(

Att_Moudle
(

Ri

))

.

(10)Lf = Lc + �Lt.

(11)Lc = CE(P, Y),

(12)Lt = L1
(

�

)

.

and can be divided into five categories: human–object inter-
action, human action, human–human interaction, musical 
instrument performance, and sports. HMDB51 contains 51 
types of actions, a total of 6849 videos, with a resolution of 
320*240, mainly collected on YouTube, google and other 
websites, and can be divided into categories such as facial 
actions, body actions, human–object interactions and human 
actions.

4.2 � Training strategy and implementation details

We train MAST on 2 Nvidia Titan X GPUs (12 GB mem-
ory), implemented with pytorch 1.0. GPU perform massively 
parallel operations, which can accelerate network compu-
tations. The size of all input images is 224*224. We use 
stochastic gradient descent algorithm to learn the network 
parameters, where the batch size is set to 64 and the momen-
tum is set to 0.9. We initialize the learning rate as 0.001 
and decreases to its 1/10 after 40 and 80 epochs. The total 
number of epochs is 100. In our experiment, the number 
of uniformly sampled frames N is set to 8. The coefficient 
� used to balance the two different losses is set to 0.0001. 
The backbone Resnet50 model is pre-trained on ImageNet, 
we have replaced the layers after conv_4x, see Table 2 for 
specific network parameters.

4.3 � Evaluation

We obtained the recognition results of our model on the 
validation set of the above two datasets, and compared them 
with the competitive methods. The results were shown in 
Table 2. Some early methods using manual features have 
obvious disadvantages. Compared with the double-stream 
method, our method has a better improvement. It can be 
seen that there is no need to rely on additional temporal 
information, and the temporal features can also be effec-
tively captured by calculating the inter-frame motion of RGB 
frames. The two-stream method has obvious disadvantages 
in terms of speed and computational. The TSN method uses 

Table 2   The backbone structure parameter using ResNet50, s means 
stride of convolution operation

Layers Output size (spatial 
dimension)

Convolution blocks

Conv1 112*112 7*7, 64, s = 2
Conv2_x 56*56 1*1, 64; 3*3, 64 × 3; 1*1, 256
Conv3_x 28*28 1*1, 128; 3*3, 128 × 4; 1*1, 512
Conv4_x 14*14 1*1, 256; *3, 256 × 6; 1*1, 1024
Conv5 7*7 1*1, 512; 3*3, 256 × 3; 1*1, 2048
Conv6 3*3 3*3, 256
Conv7 1*1 3*3, 256



Improved SSD using deep multi‑scale attention spatial–temporal features for action recognition﻿	

1 3

a variety of data input forms, comparing to its RGB input, 
the accuracy of our method is improved by 2.1% on UCF101 
it mainly due to TSN only performs a simple weighted aver-
age on the extracted features at different times, lacking in-
depth temporal modeling. Compared with the method using 
3D convolution kernel, our method is 10% higher than C3D 
on UCF101 and 9% on HMDB51 respectively, it can be 
seen that spatial–temporal features can also be extracted 
without using a 3D convolution kernel that consumes a lot 
of calculation. The method of modeling temporal features 
used in STM is similar to ours. Our performance is slightly 
worse than that of STM. We consider the replacement of the 
entire residual module in STM improves its accuracy, but 
our method pays more attention to salient spatial–temporal 
areas in different scales and effectively verify the structure of 
the SSD. In addition, paying attention to the feature relation-
ship between channels is what we need to further study in 
the future. We did not compare the operating efficiency with 
the two-stream method or the method using 3D convolution 
kernel, because the speed of these methods is incomparable 
to using 2D convolution.

4.4 � Ablation experiments

4.4.1 � Structures

We use ablation experiments to prove the effectiveness of 
each part of our method. We first considered the impact of 
using different network structures to extract features on our 
method in video behavior recognition. ResNet itself is a 
network with a residual structure [43], and the multi-scale 
spatiotemporal attention module we introduced in the addi-
tional layer can also be regarded as a residual structure. We 
compared the experimental results of using VGG16 and 
BN-Inception as the backbone. The results were shown in 
Table 3. It can be seen that using ResNet50 as the backbone 

has the best performance. We consider that because Resnet 
can solve the problems of network degradation and gradient 
explosion, making the neural network deeper and have better 
classification effect (Table 4).

4.4.2 � Influence of the added modules

We analyzed the role of our modules added in different 
convolutional layers. The receptive field size of the feature 
map obtained by different layers is different, so we tried sev-
eral different module addition schemes: only add a module 
after conv4_x, add module after conv5 and conv6, add after 
conv4_x and conv5, add after conv4 _x, conv5 and conv6. 
The different results are shown in Table 5. Since the high-
level feature map contains more semantic information, we 
can see that adding our module after the higher-level con-
volutional layer is better than adding it in the lower level. In 
terms of quantity, adding a module after all additional layers 
can better integrate spatial–temporal information.

In addition, we explored the impact of two different sub-
modules on our network. Compared with the temporal fea-
ture modeling module, the self-attention module explores 
the features that are more worthy of highlighting in the spa-
tial and temporal dimensions, while the latter only extracts 
temporal information. We found through experiments that 
only a single module is not as effective as a combination 
using the both, it can be seen that the information in the 

Table 3   Results on UCF101 and HMDB51 datasets

All the results are the accuracy of classification

Methods UCF101 HMDB51

MVSV [47] 0.835 0.559
Mv + FV [48] 0.785 0.467
EMV [49] 0.802 –
C3D [25] 0.823 0.568
STC(ResNet101) [50] 0.901 0.626
P3D [27] 0.886 –
Two-stream [20] 0.880 0.594
TSN(ResNet50) [21] 0.862 0.547
TSN(RGB)(BN-Inception) [21] 0.911 –
STM [51] 0.962 0.722
Ours 0.932 0.66

Table 4   The accuracy on 
different backbone structures 
(test on UCF101)

Backbone Accuracy

VGG16 0.905
BN-Inception 0.919
ResNet50 0.932

Table 5   The performances of adding module in different layers (test 
on UCF101)

Position Accuracy

After conv4_x 0.884
After conv4_x and conv5 0.902
After conv5 and conv6 0.912
After conv4_x, conv5 and conv6 0.932

Table 6   Comparison between different module strategies (test on 
UCF101)

Method Accuracy

Self-attention only 0.874
Temporal modeling only 0.892
MAST (using two sub-modules) 0.932
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spatial domain and the information in the time domain are 
mutually helpful (Table 6).

5 � Conclusion

This paper proposes a method to introduce the multi-scale 
attention spatial–temporal features into the advanced frame-
work SSD, effectively enhancing the representation capabil-
ity of the features used for video action recognition, and 
improving the recognition performance. The results prove 
that the effectiveness of our proposed method. It is worth 
mentioning that we only use RGB frames as the input, and 
we can still capture effective temporal representations in 
features of multi different spatial scales. In future work, we 
will study a more robust network structure to allow deeper 
backbone to be embedded in it. In addition, we will explore 
the impact of high-resolution images on video action recog-
nition and explore different forms of attention mechanisms.
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