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Abstract
The facility layout problem (FLP) is a combinato-
rial optimization problem. The performance of the
layout design is significantly impacted by diverse,
multiple factors. The use of algorithmic or procedu-
ral design methodology in ranking and identification
of efficient layout is ineffective. In this context, this
study proposes a three-stage methodology where
data envelopment analysis (DEA) is augmented
with unsupervised and supervised machine learn-
ing (ML). In stage 1, unsupervised ML is used for
the clustering of the criteria in which the layouts
need to be evaluated using homogeneity. Layouts are
generated using simulated annealing, chaotic simu-
lated annealing, and hybrid firefly algorithm/chaotic
simulated annealing meta-heuristics. In stage 2,
the nonparametric DEA approach is used to identify
efficient and inefficient layouts. Finally, supervised
ML utilizes the performance frontiers from DEA (effi-
ciency scores) to generate a trained model for getting
the unique rankings and predicted efficiency scores
of layouts. The proposed methodology overcomes the
limitations associated with large datasets that contain
many inputs / outputs from the conventional DEA
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and improves the prediction accuracy of layouts. A
Gaussian distribution product demand dataset for time
period T = 5 and facility size N = 12 is used to prove the
effectiveness of the methodology.

K E Y W O R D S

data envelopment analysis, intelligent optimization, machine
learning, stochastic dynamic facility layout problem

1 INTRODUCTION

The facility layout problem (FLP) is defined as the arrangement of facilities “N” in a given space
“M” to get an optimal layout so that the material travel distance is minimized. Material move-
ment reduction lowers work-in-process levels and throughput times, lessens the damage to the
product, streamlines material control and scheduling, and eases the congestion in the area thus
minimizing material handling costs (MHC). Tompkins et al1 discussed that MHC contributes
between 20% and 50% of the product's operating cost so that it can be used to evaluate the effec-
tiveness of a layout. An efficient layout minimizes the distance traveled by the material between
different locations which, in-turn, reduces the MHC. MHC is often referred to as the quantita-
tive factor that impacts the facility's layout. FLP details can be found in Rosenblatt and Lee,2
Kusiak and Heragu,3 and Meller and Gau.4 Koopmans and Beckman5 represented FLP using the
quadratic assignment problem (QAP), which is a combinatorial optimization problem (COP). In
QAP modeling, FLP is a discrete representation where the equal-sized facilities are assigned to
the same number of known locations. In practical scenarios, facility layout design is dependent
on the demand that can be static, dynamic, or random and time horizon that can be single period
or multiple periods. The paper discusses uncertain product demand over multiple time periods,
known as stochastic dynamic FLP (SDFLP), and its solution methodology. The uncertain product
demand due to social, economic, political, and governmental rules and regulations and environ-
mental and seasonal conditions is unavoidable. This results in various qualitative factors, such
as the working conditions, storage, waste management, safety regulations, and ease of mainte-
nance, which impact the facility's layout. Due to the presence of quantitative parameters and
qualitative factors, traditional methods, such as the weight aggregation method, Pareto method,
multi-attribute decision-making and algorithmic approaches (meta-heuristics) to solve SDFLP,
may not be suitable. As a result, there is a need to develop a solution methodology that consid-
ers the characteristics of SDFLP such as the problem size, linearity, and congruency of various
criteria.

The performance of any system is measured by its efficiency. Data envelopment analysis
(DEA) is a generally used method for assessing the relative efficiencies of decision-making units
(DMUs). DEA has some advantages in that it does not require any suppositions to be made
about the distribution of inefficiency or a particular functional form of the data to determine
the efficient DMUs or efficient frontiers. At the same time, DEA suffers from some limitations,
such as the dimensionality curse, its inability to efficiently rank unique DMUs and its inability
to efficiently predict new DMUs without recalculation. Machine learning (ML) is a fairly new
domain that has gained a lot of importance as it gives computers the ability to learn and make
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accurate predictions without being explicitly programmed. ML architecture builds an algorithm
that receives input data and uses various statistical techniques to predict output within the
acceptable limits. ML centers around the recognition of patterns, regularities in data as well as
systematic relationships between the variables.

The evolution of technology facilitates and encourages us to find new ways to solve SDFLPs.
One such approach is the combination of two or more methods (procedural and/or algorithmic)
to overcome the shortcomings of a single method. Thus, combining DEA with ML can strengthen
the capabilities of DEA to rank and predict the efficiencies of the DMUs. The objective of this study
is to use meta-heuristic, DEA and ML-based integrated methodology to solve SDFLP and identify
the most efficient layout. The methodology proposed here consists of a three-stage process where
DEA is augmented with unsupervised and supervised ML. In detail, an unsupervised ML is run for
the clustering of the criteria in which the layouts need to be evaluated using homogeneity. Next,

T A B L E 1 Acronyms used in
the paper

Acronym Description

FLP Facility layout problem

MHC Material handling costs

QAP Quadratic assignment problem

COP Combinatorial optimization problem

SDFLP Stochastic dynamic facility layout problem

MADM Multi attribute decision-making

DEA Data envelopment analysis

DMUs Decision-making units

ML Machine learning

ANN Artificial neural network

COFAD-F Computerized facility design flexible heuristic

SA Simulated annealing

AHP Analytical hierarchal process

NN Neural networks

PNNs Probabilistic neural networks

BPNN Back-propagation neural network

CCR-CV Charnes, Cooper, and Rhodes—cluster validity

PDF Probability distribution function

TS Tabu search

CSA Chaotic simulated annealing

GA Genetic algorithm

ACO Ant colony optimization

PSO Particle swarm optimization

FA Firefly algorithm

CCR Charnes, Cooper, and Rhodes

BCC Banker, Charnes, and Cooper
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the layouts are generated using simulated annealing (SA), chaotic SA (CSA), and hybrid firefly
algorithm/chaotic simulated annealing meta-heuristics. Here, the nonparametric DEA approach
is also used to identify efficient and inefficient layouts and a supervised ML is then employed for
the performance frontiers from DEA (efficiency scores) to generate a trained model that is used to
get the unique rankings and predicted efficiency scores of layouts. In the study, the background
regarding the developed methodology, its technical details, and evaluation findings in the context
of the SDFLP have been provided generally.

Moving from the subject of the study and the research, the remaining content is organized
as follows: Background information regarding a review of the literature and the motivation of
the study is provided in Section 2. Following to that, the Section 3 explains the SDFLP mathe-
matical formulation, meta-heuristics, DEA, and ML. Next, the Section 4 describes the proposed
meta-heuristic-DEA-ML integrated methodology for solving SDFLP, along with the purpose and
function of each step. Section 5 gives the numerical illustration for dimension reduction, train-
ing, validation, ranking, and prediction of SDFLP. Finally, the Section 6 concludes the research
findings and gives the future scope of the framework. The acronyms used within the paper are
indicated in Table 1.

2 BACKGROUND

In this section, the past literature on facility layout with an emphasis on SDFLP is given first.
Furthermore, a past overview on DEA, artificial neural network (ANN), and ML-oriented view
are given accordingly, by also discussing about motivation of this study. In this way, it was aimed
to inform the readers about background by opening minds about the associated literature and the
origin of the study done here.

2.1 Literature review

First, it is important to start from the origin of the problem considered in this study. Shore and
Tompkins6 presented the concept of a flexible layout in a stochastic environment. They developed
computerized facility design flexible heuristic (COFAD-F). Rosenblatt and Lee.2 Rosenblatt and
Kropp.7 and Palekar et al8 solved the SDFLP with the objective to minimize MHC and rearrange-
ment cost. Moslemipour and Lee9 solved SDFLP using SA. Recent work on SDFLP can be studied
from Tayal and Singh.10-12 On the other hand, the initial models of the DEA technique were pro-
posed by Charnes et al13 and Banker et al.14 They introduced DEA for assessing efficiency in a
variety of organizations, including banks, hospitals, airlines, and universities. Modifications in
DEA can be understood from the studies by Charnes et al,15 and Tone.16 Also, other DEA mod-
els can be seen in Emrouznejad et al.17 Yang and Kuo18 proposed an integrated multivariate and
multiple attribute analysis approach based on the analytical hierarchal process and DEA for solv-
ing FLP. Azadeh et al19 solved the flow shop FLP using fuzzy DEA. Tayal and Singh20 presented
an integrated approach of SA-DEA-technique for order preference by similarity to ideal solution
(TOPSIS) for solving SDFLP. Tayal et al21 used meta-heuristics along with DEA and proposed an
integrated ranking approach for solving sustainable SDFLP.

As it can be understood, the literature has already been interested in using artificial intelli-
gence for solving the related problem. Here, especially ML techniques have popularity in terms
of alternative research processes. Athanassopoulos and Curram22 first introduced the idea of
the combination of neural networks (NNs) and DEA for classification and/or prediction. Other



TAYAL et al. 5

papers that presented the benefits of combining DEA and NN are Liu et al,23 Liao et al,24

Santin,25 Santin et al26 and Wang.27 Azadeh et al28 proposed a highly unique flexible ANN
algorithm to measure and rank scores of Iranian steam power. Mostafa29 combined probabilistic
neural networks (PNNs) with DEA to predict the efficiency of banking systems. Wu30 applied a
DEA-Back-Propagation Neural Network (BPNN) to model efficiency scores of suppliers. Kwon31

used ANN and DEA in application for the smart phone industry. Recent papers on the hybrid
DEA-ANN by Hanafizadeh et al32 used a NN back-propagation DEA for the measurement of
mutual fund efficiency and showed a considerable reduction in computer memory and CPU time
utilization as compared to conventional DEA methods. Misiunas et al33 proposed deploying DEA
to preprocess the data to remove outliers. This preserved monotonicity and reduced the size of
the dataset used to train the ANN.34 In this paper new cluster validity index, named Charnes,
Cooper & Rhodes—cluster validity (CCR-CV), by integrating eight internal clustering efficiency
measures based on DEA is presented. De Clercq et al35 proposed an integrated framework of DEA
and ML for accurate prediction of biogas production in an industrial-scale of Chinese unit.

2.2 Motivation of the study

DEA is widely used in industry to benchmark and evaluate the efficiency. It continues to attract
researchers because of its performance assessment ability. Although it is an attractive research
topic, the application of DEA to the FLP is very limited. To identify an efficient facility lay-
out remains an important requirement for decision make. As it was explained in the previous
section and understood from the literature, there is a remarkable need to merge DEA with ML
for statistical and regression analysis, achieving better results. Here, it is also important to discuss
the problem from other factors. Briefly, the manufacturing units faces new regulations, indus-
try standards and public policies infliction, new technologies introduction, and various other
organizations improvement on a continuous basis. As a result, plant managers need to have
the capability to respond to such challenges by utilizing sound performance measurement tech-
niques. Efficiency evaluation and prediction of the facility layout is a useful and important data for
the managers as it may affect their decision-making process. Hence, the academia is focusing their
work and research in this direction to find different techniques and methodologies which may
reduce the subjectivity in decision-making. One of the techniques is to use a stage-wise approach,
where the problem is decomposed into number of stages (steps). This approach has many advan-
tages such as: it improves the performance, it reduces the system complexity and it increases the
accuracy of the results. Thus, the motivation of the study introduced here is to propose this new
three-stage approach for solving SDFLP.

Moving from the mentioned motivation, a novel model called integrated metaheuristic-
DEA-ML is proposed for measuring and predicting the efficiency of layouts based on the con-
flicting criteria of an SDFLP. As supporting the motivation, the purpose of the study is to present
a comprehensive performance evaluation framework which is built on an intelligent decision
support system. This frame work will help predict and identify an efficient layout based on man-
agerial, social, and environmental criteria which can perform efficiently for a long term. Figure 1
depicts the meta-heuristic-DEA-ML integrated model as follows:

• In the first stage (Criteria), a large set of parameters/criteria influencing the facility layout
design are identified. Then, unsupervised learning is used to remove redundant/correlated cri-
teria and to obtain a linear combination of independent criteria without impacting the objective
of SDFLP.
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F I G U R E 1 Metaheuristic-data envelopment analysis-machine learning integrated model for solving
stochastic dynamic facility layout problem

• In the second stage (Model), the layout pool (DMUs) is generated using meta-heuristic, which
is evaluated using the identified criteria to find the efficiency of each layout using DEA. This
dataset is used by various ML algorithms for training and testing to get a final trained model
that is used to predict the efficiencies of layouts.

• Finally, in the last stage (Evaluation), the ranking of layouts and comparison of results from
various algorithms are performed. Also, the efficiency of new layouts (dataset) can be predicted
in this stage.

3 MATHEMATICAL FORMULATION AND THE
METHODOLOGY

3.1 Stochastic FLP

The product flow between facilities is an expression of demand that could be static, dynamic,
or uncertain. Due to an uncertain product demand that can be modeled as stochastic random
variables, the stochastic FLP (SFLP) has gained prominence. This random variable is expressed)
with known mean and variance as a probability distribution function. The SDFLP mathematical
model as discussed in Moslemipour and Lee9 is given below, and the notations are described in
Figure 2. Product demand with known mean and variance is assumed to be normally distributed.
For deriving the mathematical model it is assumed that the distance between locations is numeric
value, the facilities are equal size, and facilities are assigned discretely to each location.
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F I G U R E 2 Notations for stochastic dynamic facility layout problem mathematical model

In Equation (1), the material handling cost (MHC) is depicted by the first expression and the
rearrangement cost (RAc) is shown by the second expression.

TMHC = 𝐶iljq = Minimize

{[
𝑇∑
𝑡=1

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝐾∑
𝑘=1

𝐸(𝐷𝑡𝑘)
𝐵𝑘

𝐶𝑡𝑘

𝑁∑
𝑙=1

𝑁∑
𝑞=1

𝑑𝑙𝑞𝑥𝑡𝑖𝑙𝑥𝑡𝑗𝑞

+ 𝑍𝑝

√√√√√ 𝑇∑
𝑡=1

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝐾∑
𝑘=1

Var(𝐷𝑡𝑘)
𝐵2
𝑘

𝐶2
𝑡𝑘

(
𝑁∑
𝑙=1

𝑁∑
𝑞=1

𝑑𝑙𝑞𝑥𝑡𝑖𝑙𝑥𝑡𝑗𝑞

)2⎤⎥⎥⎥⎦
+

[
𝑇∑
𝑡=2

𝑁∑
𝑖=1

𝑁∑
𝑙=1

𝑁∑
𝑞=1

𝑎tilq𝑥(𝑡−1)𝑖𝑙𝑥𝑡𝑖𝑞

]}
. (1)

This formula is subject to:
𝑁∑
𝑖=1

𝑥𝑡𝑖𝑙 = 1; ∀𝑡, 𝑙. (2)

𝑁∑
𝑙=1

𝑥𝑡𝑖𝑙 = 1; ∀𝑡, 𝑖. (3)

𝑥𝑡𝑖𝑙 =

{
1, if facility i is assigned to location 𝑙 in period 𝑡

0, otherwise
. (4)

𝑀𝑘𝑖 −𝑀𝑘𝑗 = 1. (5)
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3.2 Meta-heuristics

Meta-heuristics are high-level procedures or heuristics aimed at finding, generating or selecting a
heuristic. This can provide an appropriate solution to a COP, specifically with incomplete/imper-
fect information or limited computing capacity. Different meta-heuristics are used to approximate
the solution of very large FLPs, for example, SA, Tabu search, CSA, the genetic algorithm, Ant
Colony Optimization, particle swarm optimization, and the firefly algorithm (FA). Another class
of meta-heuristics is the hybrid meta-heuristic that combines the meta-heuristic with other opti-
mization approaches. The key concept is to combine the high-level algorithms that explore search
spaces using different strategies of intensification and diversification. Lee et al36 and Tayal and
Singh37 applied Hybrid ACO/SA and Hybrid FA/CSA, respectively to solve SDFLP. However
recent trends and application in Metaheuristic can studied from Ganesan et al,38 Gupta and
Deep,39 Vasant et al40,41 and Zelinka et al.42

3.3 Data envelopment analysis

DEA is a nonstochastic and nonparametric estimation of production frontier based on the actual
observations of input-output in the sample. DEA is defined as a mathematical programming for-
mulation applied to observational data in order to estimate the relative efficiency of DMUs. DMUs
are compared in terms of multiple inputs and multiple outputs. DEA does not require a specific
relationship between inputs and outputs nor fixed weights for the inputs and outputs. The DMUs
that lie on the frontier are recognized as efficient, and the remaining as inefficient. The DMU's
efficiency is given as the ratio of the weighted sum of its outputs (ie, performance) to the weighted
sum of its inputs (ie, resources utilized). DEA requires several inputs and outputs to be considered
concurrently to measure DMU efficiency, as given by Equation (6).

Efficiency =
Weighted sum of outputs
Weighted sum of inputs

, ∀DMUs, (6)

assuming a set of observed DMUs {DMUj ∣ j = 1, 2, … , n} associated with m inputs {xij ∣ i =
1, 2, … , m} and s outputs {yrj ∣ r = 1, 2, … , s}.

DEA finds the most favorable set of weights for each DMU (the set of weights that maximizes
the efficiency rating of the DMU without making its own or any other DMU rating greater than
one). A basic DEA model can provide important metrics and benchmarks for monitoring and
managing actions to improve the comparative performance of entities in a group. A DMU's effi-
ciency score is the distance to this efficient frontier from each DMU. According to this distance,
the efficiency scores of inefficient DMUs are calculated and represented as a Pareto ratio. CCR
(Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and Cooper) are the two common
DEA models.

3.4 Machine learning

The area of ML is typically organized in two main branches: supervised learning and
nonsupervised learning. In supervised learning, the ML algorithm receives prelabeled input
examples and intends to converge to the best as possible classifier, so one can predict labels for
unseen examples with high accuracy. In nonsupervised learning is associated to the process of
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building up models after analyzing the similarities among input data. For example, the clustering
algorithm PCA, k-means attempts to find k representative groups according to the relative dis-
tance of points in Rm. The main characteristic of this second type of learning is that algorithms
do not have access to labels, therefore the problem is no longer to find a map but instead analyze
how points are organized in the input space.43 Application of intelligent computing can be stud-
ied Vasant et al,44 Panda et al,45 Abu Zaher et al46 and integration of SA and clustering algorithm
is elaborated in Seifollahi.47

4 META-HEURISTIC-DEA-ML MODEL FOR SOLVING
SDFLP

Figure 3 illustrates the steps involved in solving SDFLP using the integrated framework of
meta-heuristic, DEA, and ML. In this context, the steps of the proposed solution are as follows:

4.1 Step 1: SDFLP layout generation

The SDFLP, given by Equation (1) and subject to conditions set in Equations (2) to (5) is simulated
to generate the pool of layouts using meta-heuristics—SA (Tayal and Singh11), CSA (Tayal and
Singh10), and Hybrid FA/CSA (Tayal and Singh37).

4.2 Step 2: Identifying criteria for evaluation

The goal of a facility layout design is to streamline the flow of production material, equipment,
and manpower in a safe and comfortable environment at minimum costs. The set of criteria that
impact facility design are identified from the literature and based on discussions with experts.
These are shown in Table 2. All these criteria cannot be mathematically modeled or they may
not be congruent to the distance-based formulation given for SDFLP (Equation (1)). Also, the
aggregation of these objectives increases the complexity and computation time for solving the
SDFLP.

4.3 Step 3: Dimension reduction

The pool of layouts generated by solving SDFLP (Step 1) needs to be evaluated using the vari-
ous criteria that affect facility design. The number of factors that affect facility layout are large.
Therefore, the unsupervised learning technique is applied for reducing and removing redundan-
t/correlated criteria from the original dataset without disturbing the key objective of the FLP. The
steps are as follows.

1. The experts are asked to judge and rank each criterion on a 5-point Likert scale, where 1 is
very low, 2 is low, 3 is moderate, 4 is high, and 5 is very high in the scale. The response is
obtained from various company experts.

2. Factor analysis is performed to identify a new, smaller set of uncorrelated criteria to replace
the original set of correlated criteria. Here, principal components analysis (PCA) is used.
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F I G U R E 3 Flow chart of the meta-heuristic-data envelopment analysis-machine learning integrated
model for solving SDFLP

For the reduced criteria set obtained after factor analysis, the values for each criterion are
computed for all of the layouts.

4.4 Step 4: Efficiency analysis

The set of effective layouts is determined using DEA. For DEA, it is important that all DMUs are
functionally similar and homogenous such that the DMUs have the same number and types of
inputs and outputs. At the same time, these inputs and outputs need not be congruent. In the case
of SDFLP, DMUs are the layouts with inputs and outputs as their criteria.
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T A B L E 2 List of criteria for stochastic dynamic facility layout problem

Number Criteria Description

1 Material handling cost
(MHC)

The calculated cost as the product of material flow
between two facilities and the distance traveled
between them.

2 Flow distance The sum of volume and distance flow products.

3 Material flow time The time required to move material between two
departments (machines). Unfinished product / waste
or finished product can be described as material.

4 Accessibility The space needed for the material handling path and
operator path.

5 Maintenance To allow uninterrupted operation of manufacturing
systems.

6 Waste management All the activities or actions required from its inception
to disposal in order to manage waste.

7 Noise Acceptable minimum noise in a manufacturing facility
for proper operation.

8 Safety Condition for the workers to avoid harm or any other
unwanted outcome.

9 Rearrangement cost (RAc) The variable cost of moving a machine over a given
period of time from one location to another.

10 Hazardous movement Material movement with minimal risk and high safety
between facilities.

11 Product type A facility can produce a variety of products.

12 Flexibility There are two main issues. The first requires the
performance of a variety of tasks in the presence of
different operating conditions, and the second
addresses the flexibility of future expansion.

13 Time period (T) The time period considered to design the dynamic
layout.

14 Number of products (P) Number of products considered to design the dynamic
layout.

15 Facility size (N) Number of machines to be allocated.

As we know, SDFLP is a COP. Therefore, finding an optimal solution to satisfy all the criteria is
not possible. For a given set of inputs, it is possible to generate a number of layouts. As a result, the
proposed SDFLP becomes a constant input case for the DEA model. Lovell and Pastor48 presented
three propositions that are adopted for analyzing layout efficiency, given in Figure 4.

The SDFLP has a constant input. Therefore, the BCC model without inputs is adopted for effi-
ciency analysis. A proper number of DMUs is required to identify a true performance frontier.49

Bowlin50 suggested that at least two DMUs are required for each input or output measure. The
result obtained after solving DEA gives performance frontiers that will be used as the final layouts
for design and analysis. At the same time, we are aware that DEA has some disadvantages.
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F I G U R E 4 Data
envelopment analysis
propositions

1. It is possible to rank inefficient DMUs according to their inefficiency values. It is observed that
with the increase in input and output the number of efficient DMUs also increases. Ranking
DMUs within the efficiency score of 1 is not possible.

2. Curse of dimensionality. For large dataset problems where the number of criteria can be more
and/or the number of DMUs is large, an advanced computer with high processing speed and
memory is required. Also, it leads to loss of visualization due to the higher number of datasets.
To overcome this shortcoming, PCA is applied as discussed in Step 3.

3. To predict the efficiency of the new DMU using the same dataset, DEA-based efficiency
analysis cannot be applied without recalculating the efficiency of all DMUs.

4.5 Step 5: Training of data

For finding the unique efficiency and rankings of layouts, the supervised learning technique is
applied. Supervised learning builds an algorithm using input data, a set of features or attributes,
which can estimate a specific outcome. It has two stages, learning and inference. In the learning
stage, the first step is to describe the data (called a feature vector) and then summarize it into a
model. This is the most time-consuming stage, due to the time it takes to converge to a useful
model. This model is then used in the inference stage, discussed in Step 7. Figure 5 describes the
learning pipeline.

In our research, linear and logistic regression techniques are used. Linear regression is a sta-
tistical modeling technique that is used to describe a continuous response variable as a linear
function of one or more predictor variables. Logistic regression fits a model that can predict the
probability of a binary response that belongs to one class or another.

4.6 Step 6: K-fold cross-validation

After training, a separate dataset is used for testing, which, ideally, should be completely different
from the training set. A small predictor error means the algorithm is able to estimate the correct

F I G U R E 5 Learning pipeline
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F I G U R E 6 K-fold validation, K = 5.
Data are split randomly into equal size K = 5
folds. At each step, one fold is selected as
test data and the remaining four are used as
training data. The procedure is repeated five
times

F I G U R E 7 Inference pipeline

output (for the test set). To perform this, the commonly used procedure is K-fold cross-validation,
which can be studied from Kohavi.51 Here, the dataset is split into K parts and each split of
data is called a fold. The first K − 1 fold is used for training (learning algorithm). Then, the data
that is held back (validation) is tested. The mean and standard deviations is calculated for each
evaluation to obtain the performance score to select the best model (Figure 6).

4.7 Step 7: Obtain efficiencies for new layouts

From Steps 5 and 6, we get the new DEA-ML models. The efficiencies of all layouts were calculated
and are ranked. The mean square errors of each DEA-ML algorithm are compared, and the best
algorithm/model is selected.

The efficiency of new layouts is predicted using the best-performing algorithm. This is referred
to as inference, the second stage of supervised learning technique, where the model derived in the
learning stage is used to produce an intended output on the never-before-seen dataset. Figure 7
describes the inference pipeline.

5 APPLICATION

The proposed methodology, meta-heuristic-DEA-ML technique, for solving SDFLP is validated
using dataset from Moslemipour and Lee.9 The dataset used is a U-shaped facility with N = 12
(Figure 8), T = 5, K = 10 and Gaussian distribution product demand.



14 TAYAL et al.

F I G U R E 8 U-shaped facility N = 12

Equation (1) subject to constraints (2) to (5) is minimized to obtain the pool of layouts, as
discussed in Section 3.1, by using meta-heuristics as discussed in Section 3.2. A total of 50 layouts
are generated, and an example layout is given below.

layout(𝑠1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑡 = 1[6, 2, 7, 4, 9,11,3, 10, 5, 1,12,8]
𝑡 = 2[6, 2, 7, 4, 9, 5, 3,10,11,1, 12, 8]
𝑡 = 3[3,10,4, 7, 2, 6,12,1, 8,11,9, 5]
𝑡 = 4[11,10,3, 9, 1, 8,12,6, 7, 5, 4, 2]
𝑡 = 5[5, 9, 2, 4, 7, 6, 12, 8, 1,11,10,3]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The layout is represented by a two-dimensional matrix where each row represents a time
period, each column represents the facility location, and its element represents the machine
number. The MHC and RAc values for the given layout are 1 243 862 and 35 000, respectively.

There are numerous criteria that influence facility design, given in Table 2. PCA technique is
applied to identify reduced criteria/factors. From the survey, the responses for each criterion are
obtained and analyzed using SPSS software. Kaiser-Meyer-Olkin test is used to the appropriate-
ness of the factor analysis (value >0.5) and Bartlett's Test of Sphericity (P value < .05) is used to
examine the hypothesis that criteria are uncorrelated in the survey (Table 3).

Table 4 shows the “Total Variance Explained,” which examines the reduction of 12 criteria
into smaller dimensional set of five factors. Here, only extracted and rotated values are studied
and factors with Eigen values less than 1 can be ignored. As seen in Figure 9, a knee forma-
tion occurs between components 5 and 6, which means that five components are sufficient for
clustering.

The five factors contribute for 86.271% of the total variance in the data. The component matrix
of extracted factor to determine the criteria grouping for the SDFLP under each factor is presented
in Table 5. The final set of criteria is shown in Table 6.

MHC and RAc were already computed in Step 1. For computing the values of the other three
criteria, the mathematical formulation is explained below.

T A B L E 3 Result of KMO and Bartlett’s test

KMO measure of sampling adequacy 0.744

Bartlett’s test of sphericity Approx. chi-square 5377.312

df 66.0

Sig. 0.000
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F I G U R E 9 Eigen
value plot of the 12
components

T A B L E 5 Component matrix—extracted factors

Component

Criteria 1 2 3 4 5

Cluster 1 Rearrangement cost 0.222 −0.193 0.117 0.863 0.041

Cluster 2 Waste management −0.065 −0.106 0.12 −0.24 0.763

Material flow time 0.034 0.208 −0.089 0.303 0.653

Cluster 3 Maintenance 0.887 −0.264 −0.371 −0.062 0.023

Flow distance 0.886 −0.265 −0.373 −0.062 0.022

Accessibility 0.887 −0.263 −0.373 −0.062 0.024

Cluster 4 Noise 0.477 0.849 0.193 −0.02 −0.009

Safety 0.451 0.852 0.205 −0.005 −0.02

Hazard management 0.462 0.855 0.195 −0.024 −0.02

Cluster 5 Flexibility 0.418 −0.37 0.567 0.312 −0.113

Robustness 0.335 −0.382 0.727 −0.17 0.101

Product demand 0.379 −0.449 0.58 −0.273 −0.021

5.1 Closeness rating

For SDFLP, the closeness rating function is given by Equation (7), subjected to constraints in
Equations (2) to (5),

CF(𝜋) = CFiljq =
𝑇∑
𝑡=1

N∑
i=1

N∑
j=1

𝑟𝑖𝑗

N∑
l=i

N∑
q=1

𝑑𝑙𝑞𝑥𝑡𝑖𝑙𝑥𝑡𝑗𝑞. (7)

where rij is the closeness rating of facilities i and j. CFiljq is the closeness rating function of locating
facility i at location l and facility j at location q. Figure 10 shows the closeness rating matrix, where
the closeness rating is a function of distance, which means closer the facilities higher will be the
rating.
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T A B L E 6 Final set of criteria

Criteria Classification Explanation

Flexibility Criteria 1: Material Handling Cost
(MHC)

The facility layout needs to adapt to the
fluctuations in product demand, for
which the layout should be robust
and flexible. These factors affect any
manufacturing firm's material
handling costs.

Robustness

Product demand

Rearrangement Cost Criteria 2: Rearrangement cost
(RAc)

Facilities need to be rearranged as a
single layout can be inefficient for all
time periods, for this the
rearrangement cost is accounted.

Accessibility Criteria 3: Closeness Rating For ease of handling the material,
movement of the operators and
facility's maintenance.

Maintenance

Flow distance

Hazard Criteria 4: Hazardous movement For movement of hazardous material
and waste, ensuring worker's safety
and congeniality of the work place.

Safety

Noise

Material Handling Flow
Time

Criteria 5: Material handling flow
time

For material and waste movement.

Waste management

5.2 Hazardous movement

For SDFLP, the hazardous movement function is given by Equation (8) subjected to constraints
in Equations (2) to (5),

HM(𝜋) = HMiljq =
𝑇∑
𝑡=1

N∑
i=1

N∑
j=1

hm𝑖𝑗

N∑
l=i

N∑
q=1

𝑑𝑙𝑞𝑥𝑡𝑖𝑙𝑥𝑡𝑗𝑞 (8)

where hmij is the hazardous movement rating between facilities i and j. It is a time-independent
variable. HMiljq is the hazardous movement function between facility i at location l and facility
j at location q. The numerical code, “0” means no hazard, “1” is for caution, “2” means prone
to minor injury, “3” is warning sign for major injury prone area, and “4” means life-threatening,
that is, danger zone, is used. Figure 11 gives the hazardous movement matrix which is a function
of distance. For instance, to reduce the risk between facilities whose hazard scores are high the
distance between them needs to be maximized.



18 TAYAL et al.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 4 8 10 10 6 4 8 10 10 6 4

2 4 0 1 6 2 4 4 1 6 2 4 4

3 8 1 0 4 10 2 8 1 4 10 2 8

4 10 6 4 0 2 4 10 6 4 2 4 10

5 10 2 10 2 0 1 10 2 10 2 1 10

6 6 4 2 4 1 0 6 4 2 4 1 6

7 4 4 8 10 10 6 0 4 4 8 10 10

8 8 1 1 6 2 4 4 0 8 1 1 6

9 10 6 4 4 10 2 4 8 0 10 6 4

10 10 2 10 2 2 4 8 1 10 0 10 2

11 6 4 2 1 1 1 10 1 6 10 0 6

12 4 4 8 10 10 6 10 6 4 2 6 0

F I G U R E 10
Adjacency matrix for
“N” = 12

5.3 Material handling flow time

Material and waste movement between two facilities is sequential and calculated by the flow
distance divided by the velocity, as given in Equation (9), subjected to constraints in Equations (2)
to (5).

MHT(𝜋) = MHTiljq =
∑𝑇

𝑡=1
∑N

i=1
∑N

j=1
∑𝑁

𝑙=1
∑𝑁

𝑞=1 𝑑𝑙𝑞𝑥𝑡𝑖𝑙𝑥𝑡𝑗𝑞∕velocity (9)

where MHTiljq is the material handling time function between facility i at location l and facility
j at location q. In our illustration, the work flow in the process is assumed to be 0.5 units/min.
Table 7 gives the values of the criteria for the pool of 50 layouts.

DEA is applied on the 40 layouts from Table 7 to identify the efficient layout, considering the
five criteria and their values. The output-oriented BCC model is applied, and an efficiency score
is computed, as given in Table 8. It is seen that 21 DMUs have an efficiency of 1.

For unique rankings and prediction, the DEA-ML technique is applied. The supervised ML
algorithms were programmed in TensorFlow. TensorFlow was released by Google for ML. It has

1 2 3 4 5 6 7 8 9 10 11 12

1 0 4 0 0 4 0 0 0 0 4 0 0

2 4 0 1 0 0 0 4 2 4 0 1 0

3 0 1 0 0 0 3 0 3 0 1 0 0

4 0 0 0 0 3 4 2 0 0 0 0 0

5 4 0 0 3 0 0 2 0 4 0 0 3

6 0 0 3 4 0 0 0 4 0 0 3 4

7 0 4 0 2 0 2 0 2 0 4 0 2

8 0 2 3 0 4 0 2 0 0 2 3 0

9 0 4 0 0 4 0 0 0 0 0 4 0

10 4 0 1 0 0 0 4 2 0 0 4 0

11 0 1 0 0 0 3 0 3 4 4 0 0

12 0 0 0 0 3 4 2 0 0 0 0 0

F I G U R E 11
Hazardous movement for
“N” = 12



TAYAL et al. 19

T A B L E 7 Criteria values for the pool of layouts

Layout

Material
handling flow
time

Rearrangement
cost

Closeness
rating

Hazardous
movement

Material
handling cost

#1 4120 46 000 109 500 25 700 1 240 780

#2 4020 35 000 107 910 25 240 1 214 293

#3 4060 40 000 107 710 25 960 1 217 822

#4 3920 46 000 110 530 25 340 1 199 635

#5 4040 36 000 109 930 26 560 1 220 217

#6 4120 35 000 106 060 25 640 1 243 862

#7 4200 27 000 108 070 26 540 1 242 892

#8 4260 29 000 105 960 24 820 1 253 106

#9 4120 34 000 107 540 24 780 1 242 368

#10 4020 47 000 106 370 26 880 1 211 550

#11 4000 47 000 104 810 25 840 1 220 787

#12 4060 48 000 107 160 25 860 1 247 686

#13 4220 37 000 106 770 27 220 1 232 851

#14 4080 31 000 108 800 24 740 1 225 323

#15 4020 41 000 109 600 25 680 1 210 757

#16 4020 44 000 106 080 25 600 1 223 571

#17 4120 43 000 107 810 26 440 1 231 465

#18 4160 47 000 106 930 25 900 1 251 543

#19 4120 46 000 109 500 25 700 1 240 780

#20 4080 22 000 107 790 27 600 1 224 289

#21 4060 35 000 107 380 27 620 1 241 328

#22 4040 46 000 109 310 26 940 1 240 195

#23 4020 47 000 106 370 26 880 1 211 550

#24 4060 39 000 107 130 26 080 1 238 908

#25 4080 45 000 107 870 25 500 1 235 607

#26 4200 45 000 108 640 26 000 1 249 403

#27 4060 43 000 109 740 25 940 1 245 371

#28 4040 43 000 107 600 25 880 1 227 909

#29 3940 29 000 109 390 24 880 1 202 740

#30 4080 44 000 107 200 25 220 1 237 646

#31 4060 40 000 107 710 25 960 1 217 822

#32 4000 44 000 109 930 25 780 1 236 178

#33 4200 37 000 108 710 25 980 1 259 775

#34 4120 36 000 110 170 25 700 1 261 789

(Continues)
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T A B L E 7 (Continued)

Layout

Material
handling flow
time

Rearrangement
cost

Closeness
rating

Hazardous
movement

Material
handling cost

#35 4020 35 000 107 910 25 240 1 214 293

#36 4100 42 000 109 040 25 780 1 236 755

#37 4080 44 000 109 060 25 820 1 232 708

#38 4100 43 000 109 390 25 020 1 240 858

#39 4140 40 000 105 880 25 840 1 257 739

#40 4120 39 000 109 780 26 280 1 240 628

#41 4200 41 000 108 150 26 000 1 255 274

#42 4100 42 000 110 970 25 660 1 245 548

#43 3920 46 000 110 530 25 340 1 199 938

#44 4120 45 000 107 490 25 480 1 242 866

#45 4040 36 000 109 930 26 560 1 220 217

#46 4080 44 000 109 440 25 460 1 250 412

#47 4220 38 000 106 560 25 800 1 256 637

#48 4080 41 000 109 100 26 360 1 253 514

#49 4120 35 000 106 060 25 640 1 243 862

#50 3920 44 000 110 570 26 740 1 182 795

multiple high-level Application Programming Interfaces (APIs) that are easier to learn and use.
They help in managing datasets, estimation, training, evaluation, and inference. A TensorFlow
program has two sections:

1. Build the graph for the computation. This is the arrangement of TensorFlow operations in a
form of graph nodes.

2. Run the graph.

The actual evaluation of the nodes is done by a TensorFlow session. The computa-
tions used for ML are complex and confusing. For easier visualization, debugging, and opti-
mization, there is a tool provided called TensorBoard. In TensorBoard, TensorFlow graphs,
plots of metrics on execution of the graph, histograms, etc., can be envisaged. Once Tensor-
Board is running, the results can be viewed in a web browser with “localhost:6006.” Recent
developments and applications of TensorFlow in ML can be seen in Abadi et al52 and at
www.tensorflow.org. The TensorFlow source code for DEA-ML includes the steps shown in
Figure 12 with the pseudo code given in Figure 13. Here, linear and logistic algorithms
are applied for learning to generate a new model using the training/testing data provided
in Table 9. The linear regression model is represented in Equation (10), and the cost func-
tion for the linear regression model is given by Equation (11). Its tensor graph is shown
in Figures 14 and 15, and the plot of cost as a function of training epochs is shown in
Figure 16. After training for 1000 epochs, the mean squared loss is 0.000547298. The five

http://www.tensorflow.org
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T A B L E 8 Efficiency score for the pool of 40 layouts after data envelopment analysis

Layout

Material
handling flow
time

Rearrangement
cost

Closeness
rating

Hazardous
movement

Material
handling cost Efficiency

#1 4120 46 000 109 500 25 700 1 240 780 1

#2 4020 35 000 107 910 25 240 1 214 293 0.979224727

#3 4060 40 000 107 710 25 960 1 217 822 0.984550705

#4 3920 46 000 110 530 25 340 1 199 635 1

#5 4040 36 000 109 930 26 560 1 220 217 0.999959594

#6 4120 35 000 106 060 25 640 1 243 862 0.987309408

#7 4200 27 000 108 070 26 540 1 242 892 1

#8 4260 29 000 105 960 24 820 1 253 106 1

#9 4120 34 000 107 540 24 780 1 242 368 0.985811394

#10 4020 47 000 106 370 26 880 1 211 550 1

#16 4020 44 000 106 080 25 600 1 223 571 0.979131353

#17 4120 43 000 107 810 26 440 1 231 465 0.996183661

#18 4160 47 000 106 930 25 900 1 251 543 1

#19 4120 46 000 109 500 25 700 1 240 780 1

#20 4080 22 000 107 790 27 600 1 224 289 1

#21 4060 35 000 107 380 27 620 1 241 328 1

#22 4040 46 000 109 310 26 940 1 240 195 1

#23 4020 47 000 106 370 26 880 1 211 550 1

#24 4060 39 000 107 130 26 080 1 238 908 0.988164062

#25 4080 45 000 107 870 25 500 1 235 607 0.990806252

#26 4200 45 000 108 640 26 000 1 249 403 1

#27 4060 43 000 109 740 25 940 1 245 371 1

#28 4040 43 000 107 600 25 880 1 227 909 0.984308329

#29 3940 29 000 109 390 24 880 1 202 740 0.990544739

#30 4080 44 000 107 200 25 220 1 237 646 0.988622363

#31 4060 40 000 107 710 25 960 1 217 822 0.984550705

#32 4000 44 000 109 930 25 780 1 236 178 1

#33 4200 37 000 108 710 25 980 1 259 775 1

#34 4120 36 000 110 170 25 700 1 261 789 1

#35 4020 35 000 107 910 25 240 1 214 293 0.979224727

#36 4100 42 000 109 040 25 780 1 236 755 0.994459112

#37 4080 44 000 109 060 25 820 1 232 708 0.994831287

#38 4100 43 000 109 390 25 020 1 240 858 0.996905829

#39 4140 40 000 105 880 25 840 1 257 739 0.999967435

(Continues)
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T A B L E 8 (Continued)

Layout

Material
handling flow
time

Rearrangement
cost

Closeness
rating

Hazardous
movement

Material
handling cost Efficiency

#40 4120 39 000 109 780 26 280 1 240 628 1

#46 4080 44 000 109 440 25 460 1 250 412 1

#47 4220 38 000 106 560 25 800 1 256 637 1

#48 4080 41 000 109 100 26 360 1 253 514 1

#49 4120 35 000 106 060 25 640 1 243 862 0.987309408

#50 3920 44 000 110 570 26 740 1 182 795 1

1. Loading the training and testing data into TensorFlow

� 40 layouts train test data, Input: Material Handling Cost, Rearrangement Cost, Material 

Handling Flow Time, Closeness Rating, Hazardous Movement, Output: Efficiency (from 

DEA)

2. Constructing the learning model classifier

� Learning algorithm: Linear Regression, Logistic Regression

3. Start the TensorFlow session for training the model and cross-validating using K-fold method

split = (8)

4. Accuracy of the model

5. Predicting for new sample data

F I G U R E 12 Data envelopment analysis-machine learning tensor flow steps

weights, because of the five criteria, are weight_1 = 0.20315343, weight_2 = 0.04342238,
weight_3 = 0.02651982, weight_4 = −0.14450487, and weight_5 = 0.04755654. The bias is
b = 0.92481017.

Y predicted = [weight][𝑋] + 𝑏 (10)

cost = (𝑌 − Y predicted)2, (11)

where X is a vector holding the value of each criteria for each layout and Y is the layout efficiency
from the DEA.

The logistic regression model is represented in Equation (12), and the cost function
for the linear regression model is given by Equation (13). Its tensor graph is shown in
Figure 15, and the plot of cost as a function of training epochs is shown in Figure 16.
After training for 1000 epochs, the mean squared loss is 5.52048e-05. The five weights are
weight_1 = 0.64860719, weight_2 = 0.47263116, weight_3 = 0.4062393, weight_4 = 1.58002031,
and weight_5 = 1.57390189. The bias is b = 2.07157826.

Y predicted = Sigmoid([weight][𝑋] + 𝑏) (12)

cost = mean
(∑

((−𝑌 ∗ log(Y predicted)) + (1 − 𝑌 ) ∗ log(1 − Y predicted))
)

(13)
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F I G U R E 13 Data envelopment analysis-machine learning tensor flow pseudo code

For the 40 layouts, the efficiency rankings using linear regression and logistic regression
models are captured in Table 9.

In Table 9, Layout#26, given below, is ranked 1 as per the models.

layout(𝑠26) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑡 = 1[6, 7, 2, 4, 9,11,5, 3,10,1, 12, 8]
𝑡 = 2[8,12,11,10,3, 9, 5, 4, 2, 7, 6, 1]
𝑡 = 3[12, 8, 4, 2, 6, 7, 11,10,3, 9, 5, 1]
𝑡 = 4[8, 1, 12,11,9, 5, 3, 10, 2, 4, 6, 7]
𝑡 = 5[3,10,11,2, 4, 7, 6, 1, 8,12,9, 5]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Table 10 shows that the mean squared error (MSE) for logistic regression is less than that of
linear regression. Also, the efficiency scores and ranking obtained from DEA map significantly
with those obtained from DEA-ML (logistic regression). The efficiency of the remaining 10 layouts
from the pool of layouts is predicted using the logistic regression model, given in Table 11.
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T A B L E 9 Comparison of rankings among DEA-BCC, DEA-ML (linear regression model), and
DEA-ML (logistic regression model)

Layout
Efficiency
DEA-BCC

Rank
DEA-
BCC

Efficiency
DEA-ML
(linear
regression)

Rank
DEA-ML
(linear
regression)

Efficiency
DEA-ML
(logistic
regression)

Rank
DEA-ML
(logistic
regression)

#1 1 1 1.02403784 5 0.99616987 3

#2 0.979224727 38 0.97717577 27 0.98179501 37

#3 0.984550705 35 1.00898623 14 0.9892652 33

#4 1 1 0.9837485 23 0.98768741 35

#5 0.999959594 23 1.00651228 18 0.98950231 32

#6 0.987309408 32 0.97347832 31 0.99084598 26

#7 1 1 1.03087699 2 0.99018985 30

#8 1 1 1.02098942 7 0.99052703 28

#9 0.985811394 34 0.97689581 29 0.98991126 31

#10 1 1 1.00838876 16 0.99161106 24

#16 0.979131353 40 0.96708047 37 0.99032462 29

#17 0.996183661 25 1.03049171 3 0.99433511 17

#18 1 1 1.01380384 11 0.99680871 2

#19 1 1 1.02403784 5 0.99616987 3

#20 1 1 0.99184799 21 0.97893435 39

#21 1 1 0.96980035 35 0.992607 21

#22 1 1 0.98738593 22 0.99615461 5

#23 1 1 1.00838876 16 0.99161106 24

#24 0.988164062 31 0.96560073 38 0.99228716 22

#25 0.990806252 28 0.99443966 20 0.99433303 18

#26 1 1 1.05093563 1 0.99698728 1

#27 1 1 0.97820312 26 0.99554402 10

#28 0.984308329 37 0.98255891 24 0.99222434 23

#29 0.990544739 29 0.94665223 40 0.96455085 40

#30 0.988622363 30 0.98157936 25 0.99367416 20

#31 0.984550705 35 1.00898623 14 0.9892652 33

#32 1 1 0.96086454 39 0.99430943 19

#33 1 1 1.01763844 10 0.99604034 6

#34 1 1 0.97203767 33 0.99562424 9

#35 0.979224727 38 0.97717577 27 0.98179501 37

#36 0.994459112 27 1.00962818 12 0.99438226 16

#37 0.994831287 26 1.00924873 13 0.9944331 15

(Continues)
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T A B L E 9 (Continued)

Layout
Efficiency
DEA-BCC

Rank
DEA-
BCC

Efficiency
DEA-ML
(linear
regression)

Rank
DEA-ML
(linear
regression)

Efficiency
DEA-ML
(logistic
regression)

Rank
DEA-ML
(logistic
regression)

#38 0.996905829 24 0.99942046 19 0.99471951 13

#39 0.999967435 22 0.96976149 36 0.99511731 12

#40 1 1 1.0188266 9 0.99471468 14

#46 1 1 0.97622621 30 0.99600154 7

#47 1 1 1.02034509 8 0.99538213 11

#48 1 1 0.97095513 34 0.99592638 8

#49 0.987309408 32 0.97347832 31 0.99084598 26

#50 1 1 1.02406955 4 0.98413104 36

Abbreviations: DEA-BCC, data envelopment analysis-Banker, Charnes, and Cooper; DEA-ML, data envelopment
analysis-machine learning.

5.4 Limitations of the study

Although the obtained findings provide positive trends in terms of the proposed methodology, it
is also possible to explain some about limitations, too. In this sense, the meta-heuristic-DEA-ML
solution for measuring and predicting layout efficiency for SDFLP is a system of different
components, which should be carefully used according to synergy among each of different com-
ponents. So, it may be give better opportunity in terms of being practical if further research

F I G U R E 14 Tensor
graph for linear regression
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F I G U R E 15 Tensor graph for logistic regression

works provide a solution with simpler algorithmic structure. On the other hand, there is the
deep learning, which is a trendy and more advanced form of ML. The solution proposed in
this study may be overcome by deep learning-based techniques and the approach of deep
learning may be more effective in terms of analyzing more and more data at the same time.
However, of course applying deep learning will require use of stronger computer systems so
applicability in this manner may be an advantage for the meta-heuristic-DEA-ML solution of

T A B L E 10 Mean squared error (MSE) for the learning algorithms

Training epoch
MSE
DEA-ML (linear regression)

MSE
DEA-ML (logistic regression)

10 0.0800474 0.0214715

100 0.0123861 0.000708778

500 0.00710666 8.76759𝑒-05

1000 0.000547298 5.52048𝑒-05
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F I G U R E 16 Cost function of learning algorithms

this study. Additionally, SDFLP is a problem, which can be improved and changed accord-
ing to different conditions so it is a paradox to express that the solution of this study will
always solve every kind of SDFLP problem. That limitation is important since it gives an
opportunity to develop alternative systems and analyze alternative SDFLP problems always.
As a final limitation, it can be expressed that the intelligent optimization and hybrid systems
development for ML and intelligent systems are all active fields so that new algorithms or
solution ways may affect actuality of the solution of this study. That is currently a limitation
but of course also an opportunity to keep the associated fields alive and continue to further
works.



28 TAYAL et al.

Layout
Efficiency
DEA-ML (logistic regression)

#41 0.99645823

#42 0.99586135

#43 0.98776102

#44 0.99530679

#45 0.98950225

#11 0.99055356

#12 0.9961229

#13 0.99365234

#14 0.98334748

#15 0.98870343

Abbreviations: DEA-ML, data envelopment analysis-machine
learning.

T A B L E 11 Prediction efficiency of new
layouts

6 CONCLUSION AND FUTURE SCOPE

The research explores the potential of an integrated approach of meta-heuristic-DEA-ML for mea-
suring and predicting layout efficiency for SDFLP with conflicting criteria. For SDFLP, traditional
efficiency assessment approaches are not effective because they do not account for the complete
range of criteria and data such as social, economic, political, environmental, personal, interna-
tional standards, and risk. The aim of this paper is to demonstrate the practical and analytical
applications of the integrated meta-heuristic-DEA-ML methodology to optimize the FLP. Also,
the subjectivity of decisions, due to an expert's opinion in analyzing various criteria related to
facility design, is handled by the integration of ML with DEA. Furthermore, in the presence of
uncertainty, the layout considered here takes into account multiple products in multiple time
periods.

Data and criteria are collected from experts across manufacturing industries in the proposed
methodology. When resolving SDFLP, all of the factors are not considered relevant, as some can
be redundant, conflicting or less significant. To help derive a manageable set of factors, the het-
erogeneity properties of PCA are used. Meta-heuristic techniques are used to generate pools of
layouts. Then, DEA is applied on the conflicting criteria to compute the efficiency scores of these
layouts. Finally, these data are used for supervised learning to get a trained and validated model,
which is then used for the efficiency assessments and ranking of layouts. Two supervised ML mod-
els are considered for evaluation (linear and logistic regression). The logistic regression learning
model shows the smallest MSE. Therefore, it is used for predicting the efficiency of new layouts.

The future research direction is to collect large datasets from manufacturing industry based
on different criteria such as finance, policy, pollution, energy, and sustainability. The proposed
framework can be analyzed integrating other ML techniques, such as deep learning, with DEA
for predicting the efficiency of layouts. Finally, this framework can be used to investigate, evaluate
and predict the impact on efficiency of the layout because of the change in criteria or strate-
gies. This will facilitate the managers to have a portfolio choice strategy based on the varying
requirements of the firm.
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