
Data Science Cheatsheet
Compiled by Maverick Lin (http://mavericklin.com)

Last Updated August 13, 2018

Multi-disciplinary field that brings together concepts
from computer science, statistics/machine learning, and
data analysis to understand and extract insights from the
ever-increasing amounts of data.

Two paradigms of data research.
1. Hypothesis-Driven: Given a problem, what kind

of data do we need to help solve it?
2. Data-Driven: Given some data, what interesting

problems can be solved with it?

The heart of data science is to always ask questions. Al-
ways be curious about the world.

1. What can we learn from this data?
2. What actions can we take once we find whatever it

is we are looking for?

What is Data Science?

Structured: Data that has predefined structures. e.g.
tables, spreadsheets, or relational databases.
Unstructured Data: Data with no predefined struc-
ture, comes in any size or form, cannot be easily stored
in tables. e.g. blobs of text, images, audio
Quantitative Data: Numerical. e.g. height, weight
Categorical Data: Data that can be labeled or divided
into groups. e.g. race, sex, hair color.
Big Data: Massive datasets, or data that contains
greater variety arriving in increasing volumes and with
ever-higher velocity (3 Vs). Cannot fit in the memory of
a single machine.

Data Sources/Fomats
Most Common Data Formats CSV, XML, SQL,
JSON, Protocol Buffers
Data Sources Companies/Proprietary Data, APIs, Gov-
ernment, Academic, Web Scraping/Crawling

;

Types of Data

Two problems arise repeatedly in data science.
Classification: Assigning something to a discrete set of
possibilities. e.g. spam or non-spam, Democrat or Repub-
lican, blood type (A, B, AB, O)
Regression: Predicting a numerical value. e.g. some-
one’s income, next year GDP, stock price

Main Types of Problems

Probability theory provides a framework for reasoning
about likelihood of events.

Terminology
Experiment: procedure that yields one of a possible set
of outcomes e.g. repeatedly tossing a die or coin
Sample Space S: set of possible outcomes of an experi-
ment e.g. if tossing a die, S = (1,2,3,4,5,6
Event E: set of outcomes of an experiment e.g. event
that a roll is 5, or the event that sum of 2 rolls is 7
Probability of an Outcome s or P(s): number that
satisfies 2 properties

1. for each outcome s, 0 ≤ P(s) ≤ 1
2.
∑

p(s) = 1

Probability of Event E: sum of the probabilities of the
outcomes of the experiment: p(E) =

∑
s⊂E p(s)

Random Variable V: numerical function on the out-
comes of a probability space
Expected Value of Random Variable V: E(V) =∑
s⊂S p(s) * V(s)

Independence, Conditional, Compound
Independent Events: A and B are independent iff:

P(A ∩ B) = P(A)P(B)
P(A|B) = P(A)
P(B|A) = P(B)

Conditional Probability: P(A|B) = P(A,B)/P(B)
Bayes Theorem: P(A|B) = P(B|A)P(A)/P(B)
Joint Probability: P(A,B) = P(B|A)P(A)
Marginal Probability: P(A)

Probability Distributions
Probability Density Function (PDF) Gives the prob-
ability that a rv takes on the value x: pX(x) = P (X = x)
Cumulative Density Function (CDF) Gives the prob-
ability that a random variable is less than or equal to x:
FX(x) = P (X ≤ x)
Note: The PDF and the CDF of a given random variable
contain exactly the same information.

Probability Overview

Provides a way of capturing a given data set or sample.
There are two main types: centrality and variability
measures.

Centrality
Arithmetic Mean Useful to characterize symmetric
distributions without outliers µX = 1

n

∑
x

Geometric Mean Useful for averaging ratios. Always
less than arithmetic mean = n√a1a2...a3
Median Exact middle value among a dataset. Useful for
skewed distribution or data with outliers.
Mode Most frequent element in a dataset.

Variability
Standard Deviation Measures the squares differences
between the individual elements and the mean

σ =

√∑N
i=1(xi−x)

2

N−1

Variance V = σ2

Interpreting Variance
Variance is an inherent part of the universe. It is impossi-
ble to obtain the same results after repeated observations
of the same event due to random noise/error. Variance
can be explained away by attributing to sampling or
measurement errors. Other times, the variance is due to
the random fluctuations of the universe.

Correlation Analysis
Correlation coefficients r(X,Y) is a statistic that measures
the degree that Y is a function of X and vice versa.
Correlation values range from -1 to 1, where 1 means
fully correlated, -1 means negatively-correlated, and 0
means no correlation.
Pearson Coefficient Measures the degree of the rela-
tionship between linearly related variables

r = Cov(X,Y)
σ(X)σ(Y)

Spearman Rank Coefficient Computed on ranks and
depicts monotonic relationships

Note: Correlation does not imply causation!

Descriptive Statistics

1

Data Cleaning is the process of turning raw data into
a clean and analyzable data set. ”Garbage in, garbage
out.” Make sure garbage doesn’t get put in.

Errors vs. Artifacts
1. Errors: information that is lost during acquisi-

tion and can never be recovered e.g. power outage,
crashed servers

2. Artifacts: systematic problems that arise from
the data cleaning process. these problems can be
corrected but we must first discover them

Data Compatibility
Data compatibility problems arise when merging datasets.
Make sure you are comparing ”apples to apples” and
not ”apples to oranges”. Main types of conver-
sions/unifications:
• units (metric vs. imperial)
• numbers (decimals vs. integers),
• names (John Smith vs. Smith, John),
• time/dates (UNIX vs. UTC vs. GMT),
• currency (currency type, inflation-adjusted, divi-

dends)

Data Imputation
Process of dealing with missing values. The proper meth-
ods depend on the type of data we are working with. Gen-
eral methods include:
• Drop all records containing missing data
• Heuristic-Based: make a reasonable guess based on

knowledge of the underlying domain
• Mean Value: fill in missing data with the mean
• Random Value
• Nearest Neighbor: fill in missing data using similar

data points
• Interpolation: use a method like linear regression to

predict the value of the missing data

Outlier Detection
Outliers can interfere with analysis and often arise from
mistakes during data collection. It makes sense to run a
”sanity check”.

Miscellaneous
Lowercasing, removing non-alphanumeric, repairing,
unidecode, removing unknown characters

Note: When cleaning data, always maintain both the raw
data and the cleaned version(s). The raw data should be
kept intact and preserved for future use. Any type of data
cleaning/analysis should be done on a copy of the raw
data.

Data Cleaning

Feature engineering is the process of using domain knowl-
edge to create features or input variables that help ma-
chine learning algorithms perform better. Done correctly,
it can help increase the predictive power of your models.
Feature engineering is more of an art than science. FE is
one of the most important steps in creating a good model.
As Andrew Ng puts it:

“Coming up with features is difficult, time-consuming,
requires expert knowledge. ‘Applied machine learning’ is

basically feature engineering.”

Continuous Data
Raw Measures: data that hasn’t been transformed yet
Rounding: sometimes precision is noise; round to
nearest integer, decimal etc..
Scaling: log, z-score, minmax scale
Imputation: fill in missing values using mean, median,
model output, etc..
Binning: transforming numeric features into categorical
ones (or binned) e.g. values between 1-10 belong to A,
between 10-20 belong to B, etc.
Interactions: interactions between features: e.g. sub-
traction, addition, multiplication, statistical test
Statistical: log/power transform (helps turn skewed
distributions more normal), Box-Cox
Row Statistics: number of NaN’s, 0’s, negative values,
max, min, etc
Dimensionality Reduction: using PCA, clustering,
factor analysis etc

Discrete Data
Encoding: since some ML algorithms cannot work on
categorical data, we need to turn categorical data into nu-
merical data or vectors
Ordinal Values: convert each distinct feature into a ran-
dom number (e.g. [r,g,b] becomes [1,2,3])
One-Hot Encoding: each of the m features becomes a
vector of length m with containing only one 1 (e.g. [r, g,
b] becomes [[1,0,0],[0,1,0],[0,0,1]])
Feature Hashing Scheme: turns arbitrary features into
indices in a vector or matrix
Embeddings: if using words, convert words to vectors
(word embeddings)

Feature Engineering

Process of statistical reasoning: there is an underlying
population of possible things we can potentially observe
and only a small subset of them are actually sampled (ide-
ally at random). Probability theory describes what prop-
erties our sample should have given the properties of the
population, but statistical inference allows us to deduce
what the full population is like after analyzing the sample.

Sampling From Distributions
Inverse Transform Sampling Sampling points from
a given probability distribution is sometimes necessary
to run simulations or whether your data fits a particular
distribution. The general technique is called inverse
transform sampling or Smirnov transform. First draw
a random number p between [0,1]. Compute value x
such that the CDF equals p: FX(x) = p. Use x as the
value to be the random value drawn from the distribution
described by FX(x).

Monte Carlo Sampling In higher dimensions, correctly
sampling from a given distribution becomes more tricky.
Generally want to use Monte Carlo methods, which
typically follow these rules: define a domain of possible
inputs, generate random inputs from a probability
distribution over the domain, perform a deterministic
calculation, and analyze the results.

Statistical Analysis

2

Binomial Distribution (Discrete)
Assume X is distributed Bin(n,p). X is the number of
”successes” that we will achieve in n independent trials,
where each trial is either a success or failure and each
success occurs with the same probability p and each
failure occurs with probability q=1-p.
PDF: P (X = x) =

(
n
k

)
px(1− p)n−x

EV: µ = np Variance = npq

Normal/Gaussian Distribution (Continuous)
Assume X in distributed N (µ, σ2). It is a bell-shaped
and symmetric distribution. Bulk of the values lie close
to the mean and no value is too extreme. Generalization
of the binomial distribution as n →∞.
PDF: P (x) = 1

σ
√
2π
e−(x−µ)2/2σ2

EV: µ Variance: σ2

Implications: 68%-95%-99% rule. 68% of probability
mass fall within 1σ of the mean, 95% within 2σ, and
99.7% within 3σ.

Poisson Distribution (Discrete)
Assume X is distributed Pois(λ). Poisson expresses
the probability of a given number of events occurring
in a fixed interval of time/space if these events occur
independently and with a known constant rate λ.

PDF: P (x) = e−λλx

x!
EV: λ Variance = λ

Power Law Distributions (Discrete)
Many data distributions have much longer tails than
the normal or Poisson distributions. In other words,
the change in one quantity varies as a power of another
quantity. It helps measure the inequality in the world.
e.g. wealth, word frequency and Pareto Principle (80/20
Rule)
PDF: P(X=x) = cx−α, where α is the law’s exponent
and c is the normalizing constant

Classic Statistical Distributions

Modeling is the process of incorporating information into
a tool which can forecast and make predictions. Usually,
we are dealing with statistical modeling where we want
to analyze relationships between variables. Formally, we
want to estimate a function f(X) such that:

Y = f(X) + ε

where X = (X1, X2, ...Xp) represents the input variables,
Y represents the output variable, and ε represents random
error.

Statistical learning is set of approaches for estimating
this f(X).

Why Estimate f(X)?
Prediction: once we have a good estimate f̂(X), we can
use it to make predictions on new data. We treat f̂ as a
black box, since we only care about the accuracy of the
predictions, not why or how it works.
Inference: we want to understand the relationship
between X and Y. We can no longer treat f̂ as a black
box since we want to understand how Y changes with
respect to X = (X1, X2, ...Xp)

More About ε
The error term ε is composed of the reducible and irre-
ducible error, which will prevent us from ever obtaining a
perfect f̂ estimate.
• Reducible: error that can potentially be reduced

by using the most appropriate statistical learning
technique to estimate f . The goal is to minimize
the reducible error.
• Irreducible: error that cannot be reduced no

matter how well we estimate f . Irreducible error is
unknown and unmeasurable and will always be an
upper bound for ε.

Note: There will always be trade-offs between model
flexibility (prediction) and model interpretability (infer-
ence). This is just another case of the bias-variance trade-
off. Typically, as flexibility increases, interpretability de-
creases. Much of statistical learning/modeling is finding a
way to balance the two.

Modeling- Overview

Modeling is the process of incorporating information
into a tool which can forecast and make predictions.
Designing and validating models is important, as well as
evaluating the performance of models. Note that the best
forecasting model may not be the most accurate one.

Philosophies of Modeling
Occam’s Razor Philosophical principle that the simplest
explanation is the best explanation. In modeling, if we
are given two models that predicts equally well, we should
choose the simpler one. Choosing the more complex one
can often result in overfitting.
Bias Variance Trade-Off Inherent part of predictive
modeling, where models with lower bias will have higher
variance and vice versa. Goal is to achieve low bias and
low variance.
• Bias: error from incorrect assumptions to make tar-

get function easier to learn (high bias→ missing rel-
evant relations or underfitting)
• Variance: error from sensitivity to fluctuations in

the dataset, or how much the target estimate would
differ if different training data was used (high vari-
ance → modeling noise or overfitting)

No Free Lunch Theorem No single machine learning
algorithm is better than all the others on all problems.
It is common to try multiple models and find one that
works best for a particular problem.

Thinking Like Nate Silver
1. Think Probabilistically Probabilistic forecasts are
more meaningful than concrete statements and should be
reported as probability distributions (including σ along
with mean prediction µ.
2. Incorporate New Information Use live models,
which continually updates using new information. To up-
date, use Bayesian reasoning to calculate how probabilities
change in response to new evidence.
3. Look For Consensus Forecast Use multiple distinct
sources of evidence. Ssome models operate this way, such
as boosting and bagging, which uses large number of weak
classifiers to produce a strong one.

Modeling- Philosophies

3

There are many different types of models. It is important
to understand the trade-offs and when to use a certain
type of model.

Parametric vs. Nonparametric
• Parametric: models that first make an assumption

about a function form, or shape, of f (linear). Then
fits the model. This reduces estimating f to just
estimating set of parameters, but if our assumption
was wrong, will lead to bad results.
• Non-Parametric: models that don’t make any as-

sumptions about f , which allows them to fit a wider
range of shapes; but may lead to overfitting

Supervised vs. Unsupervised
• Supervised: models that fit input variables xi =

(x1, x2, ...xn) to a known output variables yi =
(y1, y2, ...yn)
• Unsupervised: models that take in input variables
xi = (x1, x2, ...xn), but they do not have an asso-
ciated output to supervise the training. The goal
is understand relationships between the variables or
observations.

Blackbox vs. Descriptive
• Blackbox: models that make decisions, but we do

not know what happens ”under the hood” e.g. deep
learning, neural networks
• Descriptive: models that provide insight into why

they make their decisions e.g. linear regression, de-
cision trees

First-Principle vs. Data-Driven
• First-Principle: models based on a prior belief of

how the system under investigation works, incorpo-
rates domain knowledge (ad-hoc)
• Data-Driven: models based on observed correla-

tions between input and output variables
Deterministic vs. Stochastic
• Deterministic: models that produce a single ”pre-

diction” e.g. yes or no, true or false
• Stochastic: models that produce probability distri-

butions over possible events
Flat vs. Hierarchical
• Flat: models that solve problems on a single level,

no notion of subproblems
• Hierarchical: models that solve several different

nested subproblems

Modeling- Taxonomy

Need to determine how good our model is. Best way to
assess models is out-of-sample predictions (data points
your model has never seen).

Classification

Predicted Yes Predicted No
Actual Yes True Positives (TP) False Negatives (FN)
Actual No False Positives (FP) True Negatives (TN)

Accuracy: ratio of correct predictions over total pre-
dictions. Misleading when class sizes are substantially
different. accuracy = TP+TN

TP+TN+FN+FP

Precision: how often the classifier is correct when it
predicts positive: precision = TP

TP+FP

Recall: how often the classifier is correct for all positive
instances: recall = TP

TP+FN

F-Score: single measurement to describe performance:
F = 2 · precision·recall

precision + recall

ROC Curves: plots true positive rates and false pos-
itive rates for various thresholds, or where the model
determines if a data point is positive or negative (e.g. if
>0.8, classify as positive). Best possible area under the
ROC curve (AUC) is 1, while random is 0.5, or the main
diagonal line.

Regression
Errors are defined as the difference between a prediction
y′ and the actual result y.
Absolute Error: ∆ = y′ − y
Squared Error: ∆2 = (y′ − y)2

Mean-Squared Error: MSE = 1
n

∑n
i=1(y′i − yi)2

Root Mean-Squared Error: RMSD =
√
MSE

Absolute Error Distribution: Plot absolute error dis-
tribution: should be symmetric, centered around 0, bell-
shaped, and contain rare extreme outliers.

Modeling- Evaluation Metrics

Evaluation metrics provides use with the tools to estimate
errors, but what should be the process to obtain the
best estimate? Resampling involves repeatedly drawing
samples from a training set and refitting a model to each
sample, which provides us with additional information
compared to fitting the model once, such as obtaining a
better estimate for the test error.

Key Concepts
Training Data: data used to fit your models or the set
used for learning
Validation Data: data used to tune the parameters of
a model
Test Data: data used to evaluate how good your model
is. Ideally your model should never touch this data until
final testing/evaluation

Cross Validation
Class of methods that estimate test error by holding out
a subset of training data from the fitting process.
Validation Set: split data into training set and valida-
tion set. Train model on training and estimate test error
using validation. e.g. 80-20 split
Leave-One-Out CV (LOOCV): split data into
training set and validation set, but the validation set
consists of 1 observation. Then repeat n-1 times until all
observations have been used as validation. Test erro is
the average of these n test error estimates.
k-Fold CV: randomly divide data into k groups (folds) of
approximately equal size. First fold is used as validation
and the rest as training. Then repeat k times and find
average of the k estimates.

Bootstrapping
Methods that rely on random sampling with replacement.
Bootstrapping helps with quantifying uncertainty associ-
ated with a given estimate or model.

Amplifying Small Data Sets
What can we do it we don’t have enough data?
• Create Negative Examples- e.g. classifying pres-

idential candidates, most people would be unquali-
fied so label most as unqualified
• Synthetic Data- create additional data by adding

noise to the real data

Modeling- Evaluation Environment

4

Linear regression is a simple and useful tool for predicting
a quantitative response. The relationship between input
variables X = (X1, X2, ...Xp) and output variable Y takes
the form:

Y ≈ β0 + β1X1 + ...+ βpXp + ε

β0...βp are the unknown coefficients (parameters) which
we are trying to determine. The best coefficients
will lead us to the best ”fit”, which can be found by
minimizing the residual sum squares (RSS), or the
sum of the differences between the actual ith value and
the predicted ith value. RSS =

∑n
i=1 ei, where ei = yi−ŷi

How to find best fit?
Matrix Form: We can solve the closed-form equation for
coefficient vector w: w = (XTX)−1XTY . X represents
the input data and Y represents the output data. This
method is used for smaller matrices, since inverting a
matrix is computationally expensive.
Gradient Descent: First-order optimization algorithm.
We can find the minimum of a convex function by
starting at an arbitrary point and repeatedly take steps
in the downward direction, which can be found by taking
the negative direction of the gradient. After several
iterations, we will eventually converge to the minimum.
In our case, the minimum corresponds to the coefficients
with the minimum error, or the best line of fit. The
learning rate α determines the size of the steps we take
in the downward direction.

Gradient descent algorithm in two dimensions. Repeat
until convergence.

1. wt+1
0 := wt0 − α ∂

∂w0
J(w0, w1)

2. wt+1
1 := wt1 − α ∂

∂w1
J(w0, w1)

For non-convex functions, gradient descent no longer guar-
antees an optimal solutions since there may be local min-
imas. Instead, we should run the algorithm from different
starting points and use the best local minima we find for
the solution.
Stochastic Gradient Descent: instead of taking a step
after sampling the entire training set, we take a small
batch of training data at random to determine our next
step. Computationally more efficient and may lead to
faster convergence.

Linear Regression

Improving Linear Regression
Subset/Feature Selection: approach involves identify-
ing a subset of the p predictors that we believe to be best
related to the response. Then we fit model using the re-
duced set of variables.
• Best, Forward, and Backward Subset Selection

Shrinkage/Regularization: all variables are used, but
estimated coefficients are shrunken towards zero relative
to the least squares estimate. λ represents the tuning
parameter- as λ increases, flexibility decreases → de-
creased variance but increased bias. The tuning parameter
is key in determining the sweet spot between under and
over-fitting. In addition, while Ridge will always produce
a model with p variables, Lasso can force coefficients to
be equal to zero.
• Lasso (L1): min RSS + λ

∑p
j=1 |βj |

• Ridge (L2): min RSS + λ
∑p
j=1 β

2
j

Dimension Reduction: projecting p predictors into a
M-dimensional subspace, where M < p. This is achieved
by computing M different linear combinations of the
variables. Can use PCA.
Miscellaneous: Removing outliers, feature scaling,
removing multicollinearity (correlated variables)

Evaluating Model Accuracy

Residual Standard Error (RSE): RSE =
√

1
n−2

RSS.

Generally, the smaller the better.
R2: Measure of fit that represents the proportion of
variance explained, or the variability in Y that can be
explained using X. It takes on a value between 0 and 1.
Generally the higher the better. R2 = 1 − RSS

TSS
, where

Total Sum of Squares (TSS) =
∑

(yi − ȳ)2

Evaluating Coefficient Estimates
Standard Error (SE) of the coefficients can be used to per-
form hypothesis tests on the coefficients:
H0: No relationship between X and Y, Ha: Some rela-
tionship exists. A p-value can be obtained and can be
interpreted as follows: a small p-value indicates that a re-
lationship between the predictor (X) and the response (Y)
exists. Typical p-value cutoffs are around 5 or 1 %.

Linear Regression II

Logistic regression is used for classification, where the
response variable is categorical rather than numerical.

The model works by predicting the probability that Y be-
longs to a particular category by first fitting the data to a
linear regression model, which is then passed to the logis-
tic function (below). The logistic function will always pro-
duce a S-shaped curve, so regardless of X, we can always
obtain a sensible answer (between 0 and 1). If the prob-
ability is above a certain predetermined threshold (e.g.
P(Yes) > 0.5), then the model will predict Yes.

p(X) = eβ0+β1X1+...+βpXp

1+eβ0+β1X1+...+βpXp

How to find best coefficients?
Maximum Likelihood: The coefficients β0...βp are un-
known and must be estimated from the training data. We
seek estimates for β0...βp such that the predicted proba-
bility p̂(xi) of each observation is a number close to one if
its observed in a certain class and close to zero otherwise.
This is done by maximizing the likelihood function:

l(β0, β1) =
∏
i:yi=1

p(xi)
∏

i′:yi′=1

(1− p(xi))

Potential Issues
Imbalanced Classes: imbalance in classes in training
data lead to poor classifiers. It can result in a lot of false
positives and also lead to few training data. Solutions in-
clude forcing balanced data by removing observations from
the larger class, replicate data from the smaller class, or
heavily weigh the training examples toward instances of
the larger class.
Multi-Class Classification: the more classes you try to
predict, the harder it will be for the the classifier to be ef-
fective. It is possible with logistic regression, but another
approach, such as Linear Discriminant Analysis (LDA),
may prove better.

Logistic Regression

5

Interpreting examples as points in space provides a way
to find natural groupings or clusters among data e.g.
which stars are the closest to our sun? Networks can also
be built from point sets (vertices) by connecting related
points.

Measuring Distances/Similarity Measure
There are several ways of measuring distances between
points a and b in d dimensions- with closer distances
implying similarity.

Minkowski Distance Metric: dk(a, b) = k

√∑d
i=1 |ai − bi|k

The parameter k provides a way to tradeoff between the
largest and the total dimensional difference. In other
words, larger values of k place more emphasis on large
differences between feature values than smaller values. Se-
lecting the right k can significantly impact the the mean-
ingfulness of your distance function. The most popular
values are 1 and 2.
• Manhattan (k=1): city block distance, or the sum

of the absolute difference between two points
• Euclidean (k=2): straight line distance

Weighted Minkowski: dk(a, b) = k

√∑d
i=1 wi|ai − bi|k, in

some scenarios, not all dimensions are equal. Can convey
this idea using wi. Generally not a good idea- should
normalize data by Z-scores before computing distances.

Cosine Similarity: cos(a, b) = a·b
|a||b| , calculates the

similarity between 2 non-zero vectors, where a · b is the
dot product (normalized between 0 and 1), higher values
imply more similar vectors

Kullback-Leibler Divergence: KL(A||B) =
∑d
i=i ailog2

ai
bi

KL divergence measures the distances between probabil-
ity distributions by measuring the uncertainty gained or
uncertainty lost when replacing distribution A with dis-
tribution B. However, this is not a metric but forms the
basis for the Jensen-Shannon Divergence Metric.
Jensen-Shannon: JS(A,B) = 1

2
KL(A||M)+ 1

2
KL(M ||B),

where M is the average of A and B. The JS function is the
right metric for calculating distances between probability
distributions

Distance/Network Methods

Distance functions allow us to identify the points closest
to a given target, or the nearest neighbors (NN) to a
given point. The advantages of NN include simplicity,
interpretability and non-linearity.

k-Nearest Neighbors
Given a positive integer k and a point x0, the KNN
classifier first identifies k points in the training data
most similar to x0, then estimates the conditional
probability of x0 being in class j as the fraction of
the k points whose values belong to j. The opti-
mal value for k can be found using cross validation.

KNN Algorithm
1. Compute distance D(a,b) from point b to all points
2. Select k closest points and their labels
3. Output class with most frequent labels in k points

Optimizing KNN
Comparing a query point a in d dimensions against n train-
ing examples computes with a runtime of O(nd), which
can cause lag as points reach millions or billions. Popular
choices to speed up KNN include:
• Vernoi Diagrams: partitioning plane into regions

based on distance to points in a specific subset of
the plane
• Grid Indexes: carve up space into d-dimensional

boxes or grids and calculate the NN in the same cell
as the point
• Locality Sensitive Hashing (LSH): abandons

the idea of finding the exact nearest neighbors. In-
stead, batch up nearby points to quickly find the
most appropriate bucket B for our query point. LSH
is defined by a hash function h(p) that takes a
point/vector as input and produces a number/ code
as output, such that it is likely that h(a) = h(b) if
a and b are close to each other, and h(a)!= h(b) if
they are far apart.

Nearest Neighbor Classification

Clustering is the problem of grouping points by sim-
ilarity using distance metrics, which ideally reflect the
similarities you are looking for. Often items come from
logical ”sources” and clustering is a good way to reveal
those origins. Perhaps the first thing to do with any
data set. Possible applications include: hypothesis
development, modeling over smaller subsets of data, data
reduction, outlier detection.

K-Means Clustering
Simple and elegant algorithm to partition a dataset into
K distinct, non-overlapping clusters.

1. Choose a K. Randomly assign a number between 1
and K to each observation. These serve as initial
cluster assignments

2. Iterate until cluster assignments stop changing
(a) For each of the K clusters, compute the cluster

centroid. The kth cluster centroid is the vector
of the p feature means for the observations in
the kth cluster.

(b) Assign each observation to the cluster whose
centroid is closest (where closest is defined us-
ing distance metric).

Since the results of the algorithm depends on the initial
random assignments, it is a good idea to repeat the
algorithm from different random initializations to obtain
the best overall results. Can use MSE to determine which
cluster assignment is better.

Hierarchical Clustering
Alternative clustering algorithm that does not require us
to commit to a particular K. Another advantage is that it
results in a nice visualization called a dendrogram. Ob-
servations that fuse at bottom are similar, where those at
the top are quite different- we draw conclusions based on
the location on the vertical rather than horizontal axis.

1. Begin with n observations and a measure of all the
(n)n−1

2
pairwise dissimilarities. Treat each observa-

tion as its own cluster.
2. For i = n, n-1, ...2

(a) Examine all pairwise inter-cluster dissimilari-
ties among the i clusters and identify the pair
of clusters that are least dissimilar (most simi-
lar). Fuse these two clusters. The dissimilarity
between these two clusters indicates height in
dendrogram where fusion should be placed.

(b) Assign each observation to the cluster whose
centroid is closest (where closest is defined us-
ing distance metric).

Linkage: Complete (max dissimilarity), Single (min), Av-
erage, Centroid (between centroids of cluster A and B)

Clustering

6

Comparing ML Algorithms
Power and Expressibility: ML methods differ in terms
of complexity. Linear regression fits linear functions while
NN define piecewise-linear separation boundaries. More
complex models can provide more accurate models, but
at the risk of overfitting.
Interpretability: some models are more transparent
and understandable than others (white box vs. black box
models)
Ease of Use: some models feature few parame-
ters/decisions (linear regression/NN), while others
require more decision making to optimize (SVMs)
Training Speed: models differ in how fast they fit the
necessary parameters
Prediction Speed: models differ in how fast they make
predictions given a query

Naive Bayes
Naive Bayes methods are a set of supervised learning
algorithms based on applying Bayes’ theorem with the
”naive” assumption of independence between every pair
of features.

Problem: Suppose we need to classify vector X = x1...xn
into m classes, C1...Cm. We need to compute the proba-
bility of each possible class given X, so we can assign X
the label of the class with highest probability. We can
calculate a probability using the Bayes’ Theorem:

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)

Where:
1. P (Ci): the prior probability of belonging to class i
2. P (X): normalizing constant, or probability of seeing

the given input vector over all possible input vectors
3. P (X|Ci): the conditional probability of seeing

input vector X given we know the class is Ci

The prediction model will formally look like:

C(X) = argmaxi∈classes(t)
P (X|Ci)P (Ci)

P (X)

where C(X) is the prediction returned for input X.

Machine Learning Part I

Decision Trees
Binary branching structure used to classify an arbitrary
input vector X. Each node in the tree contains a sim-
ple feature comparison against some field (xi > 42?).
Result of each comparison is either true or false, which
determines if we should proceed along to the left or
right child of the given node. Also known as some-
times called classification and regression trees (CART).

Advantages: Non-linearity, support for categorical
variables, easy to interpret, application to regression.
Disadvantages: Prone to overfitting, instable (not
robust to noise), high variance, low bias

Note: rarely do models just use one decision tree.
Instead, we aggregate many decision trees using methods
like ensembling, bagging, and boosting.

Ensembles, Bagging, Random Forests, Boosting
Ensemble learning is the strategy of combining many
different classifiers/models into one predictive model. It
revolves around the idea of voting: a so-called ”wisdom of
crowds” approach. The most predicted class will be the
final prediction.
Bagging: ensemble method that works by taking B boot-
strapped subsamples of the training data and constructing
B trees, each tree training on a distinct subsample as
Random Forests: builds on bagging by decorrelating
the trees. We do everything the same like in bagging, but
when we build the trees, everytime we consider a split, a
random sample of the p predictors is chosen as split can-
didates, not the full set (typically m ≈ √p). When m =
p, then we are just doing bagging.
Boosting: the main idea is to improve our model where
it is not performing well by using information from previ-
ously constructed classifiers. Slow learner. Has 3 tuning
parameters: number of classifiers B, learning parameter λ,
interaction depth d (controls interaction order of model).

Machine Learning Part II

Support Vector Machines
Work by constructing a hyperplane that separates
points between two classes. The hyperplane is de-
termined using the maximal margin hyperplane, which
is the hyperplane that is the maximum distance from
the training observations. This distance is called
the margin. Points that fall on one side of the
hyperplane are classified as -1 and the other +1.

Principal Component Analysis (PCA)
Principal components allow us to summarize a set of
correlated variables with a smaller set of variables that
collectively explain most of the variability in the original
set. Essentially, we are ”dropping” the least important
feature variables.

Principal Component Analysis is the process by
which principal components are calculated and the use
of them to analyzing and understanding the data. PCA
is an unsupervised approach and is used for dimensional-
ity reduction, feature extraction, and data visualization.
Variables after performing PCA are independent. Scal-
ing variables is also important while performing PCA.

Machine Learning Part III

7

ML Terminology and Concepts

Features: input data/variables used by the ML model
Feature Engineering: transforming input features to
be more useful for the models. e.g. mapping categories to
buckets, normalizing between -1 and 1, removing null
Train/Eval/Test: training is data used to optimize the
model, evaluation is used to asses the model on new data
during training, test is used to provide the final result
Classification/Regression: regression is prediction a
number (e.g. housing price), classification is prediction
from a set of categories(e.g. predicting red/blue/green)
Linear Regression: predicts an output by multiplying
and summing input features with weights and biases
Logistic Regression: similar to linear regression but
predicts a probability
Overfitting: model performs great on the input data but
poorly on the test data (combat by dropout, early stop-
ping, or reduce # of nodes or layers)
Bias/Variance: how much output is determined by the
features. more variance often can mean overfitting, more
bias can mean a bad model
Regularization: variety of approaches to reduce over-
fitting, including adding the weights to the loss function,
randomly dropping layers (dropout)
Ensemble Learning: training multiple models with dif-
ferent parameters to solve the same problem
A/B testing: statistical way of comparing 2+ techniques
to determine which technique performs better and also if
difference is statistically significant
Baseline Model: simple model/heuristic used as refer-
ence point for comparing how well a model is performing
Bias: prejudice or favoritism towards some things, people,
or groups over others that can affect collection/sampling
and interpretation of data, the design of a system, and
how users interact with a system
Dynamic Model: model that is trained online in a con-
tinuously updating fashion
Static Model: model that is trained offline
Normalization: process of converting an actual range of
values into a standard range of values, typically -1 to +1
Independently and Identically Distributed (i.i.d):
data drawn from a distribution that doesn’t change, and
where each value drawn doesn’t depend on previously
drawn values; ideal but rarely found in real life
Hyperparameters: the ”knobs” that you tweak during
successive runs of training a model
Generalization: refers to a model’s ability to make cor-
rect predictions on new, previously unseen data as op-
posed to the data used to train the model
Cross-Entropy: quantifies the difference between two
probability distributions

Machine Learning Part IV

What is Deep Learning?
Deep learning is a subset of machine learning. One popu-
lar DL technique is based on Neural Networks (NN), which
loosely mimic the human brain and the code structures
are arranged in layers. Each layer’s input is the previous
layer’s output, which yields progressively higher-level fea-
tures and defines a hierarchy. A Deep Neural Network is
just a NN that has more than 1 hidden layer.

Recall that statistical learning is all about approximating
f(X). Neural networks are known as universal approx-
imators, meaning no matter how complex a function is,
there exists a NN that can (approximately) do the job.
We can increase the approximation (or complexity) by
adding more hidden layers and neurons.

Popular Architectures
There are different kinds of NNs that are suitable for
certain problems, which depend on the NN’s architecture.

Linear Classifier: takes input features and combines
them with weights and biases to predict output value
DNN: deep neural net, contains intermediate layers of
nodes that represent “hidden features” and activation
functions to represent non-linearity
CNN: convolutional NN, has a combination of convolu-
tional, pooling, dense layers. popular for image classifica-
tion.
Transfer Learning: use existing trained models as start-
ing points and add additional layers for the specific use
case. idea is that highly trained existing models know
general features that serve as a good starting point for
training a small network on specific examples
RNN: recurrent NN, designed for handling a sequence of
inputs that have ”memory” of the sequence. LSTMs are
a fancy version of RNNs, popular for NLP
GAN: general adversarial NN, one model creates fake ex-
amples, and another model is served both fake example
and real examples and is asked to distinguish
Wide and Deep: combines linear classifiers with deep
neural net classifiers, ”wide” linear parts represent mem-
orizing specific examples and “deep” parts represent un-
derstanding high level features

Deep Learning Part I

Tensorflow
Tensorflow is an open source software library for numeri-
cal computation using data flow graphs. Everything in
TF is a graph, where nodes represent operations on data
and edges represent the data. Phase 1 of TF is building
up a computation graph and phase 2 is executing it. It is
also distributed, meaning it can run on either a cluster of
machines or just a single machine.
TF is extremely popular/suitable for working with Neural
Networks, since the way TF sets up the computational
graph pretty much resembles a NN.

Tensors
In a graph, tensors are the edges and are multidimensional
data arrays that flow through the graph. Central unit
of data in TF and consists of a set of primitive values
shaped into an array of any number of dimensions.
A tensor is characterized by its rank (# dimensions
in tensor), shape (# of dimensions and size of each di-
mension), data type (data type of each element in tensor).

Placeholders and Variables
Variables: best way to represent shared, persistent state
manipulated by your program. These are the parameters
of the ML model are altered/trained during the training
process. Training variables.
Placeholders: way to specify inputs into a graph that
hold the place for a Tensor that will be fed at runtime.
They are assigned once, do not change after. Input nodes

Deep Learning Part II

8

Deep Learning Terminology and Concepts

Neuron: node in a NN, typically taking in multiple in-
put values and generating one output value, calculates the
output value by applying an activation function (nonlin-
ear transformation) to a weighted sum of input values
Weights: edges in a NN, the goal of training is to deter-
mine the optimal weight for each feature; if weight = 0,
corresponding feature does not contribute
Neural Network: composed of neurons (simple building
blocks that actually “learn”), contains activation functions
that makes it possible to predict non-linear outputs
Activation Functions: mathematical functions that in-
troduce non-linearity to a network e.g. RELU, tanh
Sigmoid Function: function that maps very negative
numbers to a number very close to 0, huge numbers close
to 1, and 0 to .5. Useful for predicting probabilities
Gradient Descent/Backpropagation: fundamental
loss optimizer algorithms, of which the other optimizers
are usually based. Backpropagation is similar to gradient
descent but for neural nets
Optimizer: operation that changes the weights and bi-
ases to reduce loss e.g. Adagrad or Adam
Weights / Biases: weights are values that the input fea-
tures are multiplied by to predict an output value. Biases
are the value of the output given a weight of 0.
Converge: algorithm that converges will eventually reach
an optimal answer, even if very slowly. An algorithm that
doesn’t converge may never reach an optimal answer.
Learning Rate: rate at which optimizers change weights
and biases. High learning rate generally trains faster but
risks not converging, whereas a lower rate trains slower
Numerical Instability: issues with very large/small val-
ues due to limits of floating point numbers in computers
Embeddings: mapping from discrete objects, such as
words, to vectors of real numbers. useful because classi-
fiers/neural networks work well on vectors of real numbers
Convolutional Layer: series of convolutional opera-
tions, each acting on a different slice of the input matrix
Dropout: method for regularization in training NNs,
works by removing a random selection of some units in
a network layer for a single gradient step
Early Stopping: method for regularization that involves
ending model training early
Gradient Descent: technique to minimize loss by com-
puting the gradients of loss with respect to the model’s
parameters, conditioned on training data
Pooling: Reducing a matrix (or matrices) created by an
earlier convolutional layer to a smaller matrix. Pooling
usually involves taking either the maximum or average
value across the pooled area

Deep Learning Part III

Data can no longer fit in memory on one machine
(monolithic), so a new way of computing was devised
using a group of computers to process this ”big data”
(distributed). Such a group is called a cluster, which
makes up server farms. All of these servers have to be
coordinated in the following ways: partition data, coor-
dinate computing tasks, handle fault tolerance/recovery,
and allocate capacity to process.

Hadoop
Hadoop is an open source distributed processing frame-
work that manages data processing and storage for big
data applications running in clustered systems. It is com-
prised of 3 main components:
• Hadoop Distributed File System (HDFS):

a distributed file system that provides high-
throughput access to application data by partition-
ing data across many machines
• YARN: framework for job scheduling and cluster

resource management (task coordination)
• MapReduce: YARN-based system for parallel

processing of large data sets on multiple machines

HDFS
Each disk on a different machine in a cluster is comprised
of 1 master node and the rest are workers/data nodes.
The master node manages the overall file system by
storing the directory structure and the metadata of the
files. The data nodes physically store the data. Large
files are broken up and distributed across multiple ma-
chines, which are also replicated across multiple machines
to provide fault tolerance.

MapReduce
Parallel programming paradigm which allows for process-
ing of huge amounts of data by running processes on mul-
tiple machines. Defining a MapReduce job requires two
stages: map and reduce.
• Map: operation to be performed in parallel on small

portions of the dataset. the output is a key-value
pair < K,V >
• Reduce: operation to combine the results of Map

YARN- Yet Another Resource Negotiator
Coordinates tasks running on the cluster and assigns new
nodes in case of failure. Comprised of 2 subcomponents:
the resource manager and the node manager. The re-
source manager runs on a single master node and sched-
ules tasks across nodes. The node manager runs on all
other nodes and manages tasks on the individual node.

;

Big Data- Hadoop Overview

An entire ecosystem of tools have emerged around
Hadoop, which are based on interacting with HDFS.
Below are some popular ones:

Hive: data warehouse software built o top of Hadoop that
facilitates reading, writing, and managing large datasets
residing in distributed storage using SQL-like queries
(HiveQL). Hive abstracts away underlying MapReduce
jobs and returns HDFS in the form of tables (not HDFS).
Pig: high level scripting language (Pig Latin) that
enables writing complex data transformations. It pulls
unstructured/incomplete data from sources, cleans it, and
places it in a database/data warehouses. Pig performs
ETL into data warehouse while Hive queries from data
warehouse to perform analysis (GCP: DataFlow).
Spark: framework for writing fast, distributed programs
for data processing and analysis. Spark solves similar
problems as Hadoop MapReduce but with a fast in-
memory approach. It is an unified engine that supports
SQL queries, streaming data, machine learning and
graph processing. Can operate separately from Hadoop
but integrates well with Hadoop. Data is processed
using Resilient Distributed Datasets (RDDs), which are
immutable, lazily evaluated, and tracks lineage.
Hbase: non-relational, NoSQL, column-oriented
database management system that runs on top of
HDFS. Well suited for sparse data sets (GCP: BigTable)
Flink/Kafka: stream processing framework. Batch
streaming is for bounded, finite datasets, with periodic
updates, and delayed processing. Stream processing
is for unbounded datasets, with continuous updates,
and immediate processing. Stream data and stream
processing must be decoupled via a message queue.
Can group streaming data (windows) using tumbling
(non-overlapping time), sliding (overlapping time), or
session (session gap) windows.
Beam: programming model to define and execute data
processing pipelines, including ETL, batch and stream
(continuous) processing. After building the pipeline,
it is executed by one of Beam’s distributed processing
back-ends (Apache Apex, Apache Flink, Apache Spark,
and Google Cloud Dataflow). Modeled as a Directed
Acyclic Graph (DAG).
Oozie: workflow scheduler system to manage Hadoop
jobs
Sqoop: transferring framework to transfer large amounts
of data into HDFS from relational databases (MySQL)

;

Big Data- Hadoop Ecosystem

9

Structured Query Language (SQL) is a declarative
language used to access & manipulate data in databases.
Usually the database is a Relational Database Man-
agement System (RDBMS), which stores data arranged
in relational database tables. A table is arranged in
columns and rows, where columns represent character-
istics of stored data and rows represent actual data entries.

Basic Queries
- filter columns: SELECT col1, col3... FROM table1
- filter the rows: WHERE col4 = 1 AND col5 = 2
- aggregate the data: GROUP BY. . .
- limit aggregated data: HAVING count(*) > 1
- order of the results: ORDER BY col2

Useful Keywords for SELECT
DISTINCT- return unique results
BETWEEN a AND b- limit the range, the values can
be numbers, text, or dates
LIKE- pattern search within the column text
IN (a, b, c) - check if the value is contained among given

Data Modification
- update specific data with the WHERE clause:
UPDATE table1 SET col1 = 1 WHERE col2 = 2
- insert values manually
INSERT INTO table1 (col1,col3) VALUES (val1,val3);
- by using the results of a query
INSERT INTO table1 (col1,col3) SELECT col,col2
FROM table2;

Joins
The JOIN clause is used to combine rows from two or more
tables, based on a related column between them.

SQL Part I

Data structures are a way of storing and manipulating
data and each data structure has its own strengths and
weaknesses. Combined with algorithms, data structures
allow us to efficiently solve problems. It is important to
know the main types of data structures that you will need
to efficiently solve problems.

Lists: or arrays, ordered sequences of objects, mutable

>>> l = [42, 3.14, "hello","world"]

Tuples: like lists, but immutable

>>> t = (42, 3.14, "hello","world")

Dictionaries: hash tables, key-value pairs, unsorted

>>> d = {"life": 42, "pi": 3.14}

Sets: mutable, unordered sequence of unique elements.
frozensets are just immutable sets

>>> s = set([42, 3.14, "hello","world"])

Collections Module
deque: double-ended queue, generalization of stacks and
queues; supports append, appendLeft, pop, rotate, etc

>>> s = deque([42, 3.14, "hello","world"])

Counter: dict subclass, unordered collection where ele-
ments are stored as keys and counts stored as values

>>> c = Counter('apple')

>>> print(c)

Counter({'p': 2, 'a': 1, 'l': 1, 'e': 1})

heqpq Module
Heap Queue: priority queue, heaps are binary trees for
which every parent node has a value greater than or equal
to any of its children (max-heap), order is important; sup-
ports push, pop, pushpop, heapify, replace functionality

>>> heap = []

>>> for n in data:

... heappush(heap, n)

>>> heap

[0, 1, 3, 6, 2, 8, 4, 7, 9, 5]

Python- Data Structures

• Data Science Design Manual
(www.springer.com/us/book/9783319554433)
• Introduction to Statistical Learning

(www-bcf.usc.edu/~gareth/ISL/)
• Probability Cheatsheet

(/www.wzchen.com/probability-cheatsheet/)
• Google’s Machine Learning Crash Course

(developers.google.com/machine-learning/
crash-course/)

Recommended Resources

10

